59 research outputs found

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    On Temporal Graph Exploration

    Full text link
    A temporal graph is a graph in which the edge set can change from step to step. The temporal graph exploration problem TEXP is the problem of computing a foremost exploration schedule for a temporal graph, i.e., a temporal walk that starts at a given start node, visits all nodes of the graph, and has the smallest arrival time. In the first part of the paper, we consider only temporal graphs that are connected at each step. For such temporal graphs with nn nodes, we show that it is NP-hard to approximate TEXP with ratio O(n1ϵ)O(n^{1-\epsilon}) for any ϵ>0\epsilon>0. We also provide an explicit construction of temporal graphs that require Θ(n2)\Theta(n^2) steps to be explored. We then consider TEXP under the assumption that the underlying graph (i.e. the graph that contains all edges that are present in the temporal graph in at least one step) belongs to a specific class of graphs. Among other results, we show that temporal graphs can be explored in O(n1.5k2logn)O(n^{1.5} k^2 \log n) steps if the underlying graph has treewidth kk and in O(nlog3n)O(n \log^3 n) steps if the underlying graph is a 2×n2\times n grid. In the second part of the paper, we replace the connectedness assumption by a weaker assumption and show that mm-edge temporal graphs with regularly present edges and with random edges can always be explored in O(m)O(m) steps and O(mlogn)O(m \log n) steps with high probability, respectively. We finally show that the latter result can be used to obtain a distributed algorithm for the gossiping problem.Comment: This is an extended version of an ICALP 2015 pape

    Simplifying Activity-On-Edge Graphs

    Get PDF
    We formalize the simplification of activity-on-edge graphs used for visualizing project schedules, where the vertices of the graphs represent project milestones, and the edges represent either tasks of the project or timing constraints between milestones. In this framework, a timeline of the project can be constructed as a leveled drawing of the graph, where the levels of the vertices represent the time at which each milestone is scheduled to happen. We focus on the following problem: given an activity-on-edge graph representing a project, find an equivalent activity-on-edge graph (one with the same critical paths) that has the minimum possible number of milestone vertices among all equivalent activity-on-edge graphs. We provide a polynomial-time algorithm for solving this graph minimization problem

    Shortest path and maximum flow problems in planar flow networks with additive gains and losses

    Full text link
    In contrast to traditional flow networks, in additive flow networks, to every edge e is assigned a gain factor g(e) which represents the loss or gain of the flow while using edge e. Hence, if a flow f(e) enters the edge e and f(e) is less than the designated capacity of e, then f(e) + g(e) = 0 units of flow reach the end point of e, provided e is used, i.e., provided f(e) != 0. In this report we study the maximum flow problem in additive flow networks, which we prove to be NP-hard even when the underlying graphs of additive flow networks are planar. We also investigate the shortest path problem, when to every edge e is assigned a cost value for every unit flow entering edge e, which we show to be NP-hard in the strong sense even when the additive flow networks are planar

    On the Power of Tree-Depth for Fully Polynomial FPT Algorithms

    Get PDF
    There are many classical problems in P whose time complexities have not been improved over the past decades. Recent studies of "Hardness in P" have revealed that, for several of such problems, the current fastest algorithm is the best possible under some complexity assumptions. To bypass this difficulty, the concept of "FPT inside P" has been introduced. For a problem with the current best time complexity O(n^c), the goal is to design an algorithm running in k^{O(1)}n^{c\u27} time for a parameter k and a constant c\u27<c. In this paper, we investigate the complexity of graph problems in P parameterized by tree-depth, a graph parameter related to tree-width. We show that a simple divide-and-conquer method can solve many graph problems, including Weighted Matching, Negative Cycle Detection, Minimum Weight Cycle, Replacement Paths, and 2-hop Cover, in O(td m) time or O(td (m+nlog n)) time, where td is the tree-depth of the input graph. Because any graph of tree-width tw has tree-depth at most (tw+1)log_2 n, our algorithms also run in O(tw mlog n) time or O(tw (m+nlog n)log n) time. These results match or improve the previous best algorithms parameterized by tree-width. Especially, we solve an open problem of fully polynomial FPT algorithm for Weighted Matching parameterized by tree-width posed by Fomin et al. (SODA 2017)

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}
    corecore