14 research outputs found

    Tracking Aqueous Proton Transfer by Two-Dimensional Infrared Spectroscopy and ab Initio Molecular Dynamics Simulations.

    Get PDF
    Proton transfer in water is ubiquitous and a critical elementary event that, via proton hopping between water molecules, enables protons to diffuse much faster than other ions. The problem of the anomalous nature of proton transport in water was first identified by Grotthuss over 200 years ago. In spite of a vast amount of modern research effort, there are still many unanswered questions about proton transport in water. An experimental determination of the proton hopping time has remained elusive due to its ultrafast nature and the lack of direct experimental observables. Here, we use two-dimensional infrared spectroscopy to extract the chemical exchange rates between hydronium and water in acid solutions using a vibrational probe, methyl thiocyanate. Ab initio molecular dynamics (AIMD) simulations demonstrate that the chemical exchange is dominated by proton hopping. The observed experimental and simulated acid concentration dependence then allow us to extrapolate the measured single step proton hopping time to the dilute limit, which, within error, gives the same value as inferred from measurements of the proton mobility and NMR line width analysis. In addition to obtaining the proton hopping time in the dilute limit from direct measurements and AIMD simulations, the results indicate that proton hopping in dilute acid solutions is induced by the concerted multi-water molecule hydrogen bond rearrangement that occurs in pure water. This proposition on the dynamics that drive proton hopping is confirmed by a combination of experimental results from the literature

    The Future of Defamation in Illinois After Colson v. Steig and Chapski v. The Copley Press, Inc.

    Full text link
    None available

    Mécanismes de transfert de proton d’une réaction acido-basique en phase aqueuse : une étude ab-initio

    Get PDF
    Les réactions de transfert de proton se retrouvent abondamment dans la nature et sont des processus cruciaux dans plusieurs réactions chimiques et biologiques, qui se produisent souvent en milieu aqueux. Les mécanismes régissant ces échanges de protons sont complexes et encore mal compris, suscitant un intérêt des chercheurs en vue d’une meilleure compréhension fondamentale du processus de transfert. Le présent manuscrit présente une étude mécanistique portant sur une réaction de transfert de proton entre un acide (phénol fonctionnalisé) et une base (ion carboxylate) en phase aqueuse. Les résultats obtenus sont basés sur un grand nombre de simulations de dynamique moléculaire ab-initio réalisées pour des systèmes de type « donneur-pont-accepteur », où le pont se trouve à être une unique molécule d’eau, permettant ainsi l’élaboration d’un modèle cinétique détaillé pour le système étudié. La voie de transfert principalement observée est un processus ultra-rapide (moins d’une picoseconde) passant par la formation d’une structure de type « Eigen » (H9O4+) pour la molécule d’eau pontante, menant directement à la formation des produits. Une seconde structure de la molécule d’eau pontante est également observée, soit une configuration de type « Zündel » (H5O2+) impliquant l’accepteur de proton (l’ion carboxylate) qui semble agir comme un cul-de-sac pour la réaction de transfert de proton.Proton transfer reactions are found abundantly in nature and are critical processes in several chemical and biological reactions, which often occur in aqueous medium. The mechanisms governing these proton exchanges are complex and poorly understood, sparking interest of researchers for a better fundamental understanding of the transfer process. This manuscript presents a mechanistic study for a proton transfer reaction between an acid (functionalized phenol) and a base (carboxylate ion) in aqueous phase. The results are based on a large number of Ab-initio molecular dynamics simulations performed for a “donor-bridge-acceptor” type of system, where the bridge is a single molecule of water, allowing the development of a detailed kinetic model for this system. The transfer channel mainly observed is an ultra-fast one (less than a picosecond), through the formation of a Eigen-like (H9O4+) structure for the bridging water molecule, leading directly to the formation of the products. A second structure of the bridging water molecule is also observed, which is a Zündel-like (H5O2+) configuration involving the proton acceptor (carboxylate ion), which seems to act as a dead-end for the proton transfer reaction

    A Belvedere Meridionale repertóriuma : 1999-2008

    Get PDF

    A Belvedere Meridionale repertóriuma : 1999-2008

    Get PDF

    Belvedere Meridionale : 14. évf. (2002) 5-6. sz.

    Get PDF
    corecore