1,337 research outputs found

    On a Threshold Group Signature Scheme and a Fair Blind Signature Scheme

    Get PDF
    In the paper, we analyze two signature schemes. The first is a (tj,t,n)(t_j, t, n) threshold group signature scheme proposed by Shi and Feng in [1]. The second is a fair blind signature scheme proposed by Feng in [2]. Our results show that both schemes are forgeable. Besides, we introduce a concept, i.e., suspended factor, to describe the common error in designing signature scheme, which means that some signature data lie at neither base position nor exponent position in verifying equation, instead lie at factor position solely

    Anonymous threshold signatures

    Get PDF
    Aquest treball tenia l'objectiu de trobar un esquema de llindar de signatura an\`onima compacte. Tot i no haver-ne trobat cap, s'analitzen diverses solucions que s'acosten a l'objectiu publicades per altres autors i es proposa una millora per obtenir un esquema com el desitjat, però costós i interactiu

    Non-conventional digital signatures and their implementations – A review

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-19713-5_36The current technological scenario determines a profileration of trust domains, which are usually defined by validating the digital identity linked to each user. This validation entails critical assumptions about the way users’ privacy is handled, and this calls for new methods to construct and treat digital identities. Considering cryptography, identity management has been constructed and managed through conventional digital signatures. Nowadays, new types of digital signatures are required, and this transition should be guided by rigorous evaluation of the theoretical basis, but also by the selection of properly verified software means. This latter point is the core of this paper. We analyse the main non-conventional digital signatures that could endorse an adequate tradeoff betweeen security and privacy. This discussion is focused on practical software solutions that are already implemented and available online. The goal is to help security system designers to discern identity management functionalities through standard cryptographic software libraries.This work was supported by Comunidad de Madrid (Spain) under the project S2013/ICE-3095-CM (CIBERDINE) and the Spanish Government project TIN2010-19607

    Distributed Protocols at the Rescue for Trustworthy Online Voting

    Get PDF
    While online services emerge in all areas of life, the voting procedure in many democracies remains paper-based as the security of current online voting technology is highly disputed. We address the issue of trustworthy online voting protocols and recall therefore their security concepts with its trust assumptions. Inspired by the Bitcoin protocol, the prospects of distributed online voting protocols are analysed. No trusted authority is assumed to ensure ballot secrecy. Further, the integrity of the voting is enforced by all voters themselves and without a weakest link, the protocol becomes more robust. We introduce a taxonomy of notions of distribution in online voting protocols that we apply on selected online voting protocols. Accordingly, blockchain-based protocols seem to be promising for online voting due to their similarity with paper-based protocols

    Analysis and Improvement of a Threshold Signature Scheme Based on the General Access Structure

    Get PDF
    AbstractHua-wang Qin et al. proposed a novel threshold signature scheme based on the general access structure in order to break the applied limitation of the conventional threshold signature schemes. The security of the scheme was analyzed in this paper, and it is pointed out that the scheme is insecure because it cannot withstand conspiracy attacks and what's more, the identity of signer cannot be investigated. To overcome these security vulnerabilities, this paper proposed an improved threshold signature scheme, and the security analysis results show that the improved scheme can not only resist the conspiracy attack, but also have the properties of anonymity and traceability simultaneously

    The Security Flaw of an Untraceable Signature Scheme

    Get PDF
    In 2003, Hwang et al. proposed a new blind signature based on the RSA cryptosystem. The Extended Euclidean algorithm is employed in their proposed scheme. They claimed that the proposed scheme was untraceable and it could meet all requirements of a blind signature. However, we find that the signer can still trace the blind signature applicant in some cases. Thus, we present the security flaw of Hwang et al.’s scheme in this paper

    Accountability for Misbehavior in Threshold Decryption via Threshold Traitor Tracing

    Get PDF
    A tt-out-of-nn threshold decryption system assigns key shares to nn parties so that any tt of them can decrypt a well-formed ciphertext. Existing threshold decryption systems are not secure when these parties are rational actors: an adversary can offer to pay the parties for their key shares. The problem is that a quorum of tt parties, working together, can sell the adversary a decryption key that reveals nothing about the identity of the traitor parties. This provides a risk-free profit for the parties since there is no accountability for their misbehavior --- the information they sell to the adversary reveals nothing about their identity. This behavior can result in a complete break in many applications of threshold decryption, such as encrypted mempools, private voting, and sealed-bid auctions. In this work we show how to add accountability to threshold decryption systems to deter this type of risk-free misbehavior. Suppose a quorum of tt or more parties construct a decoder algorithm D(⋅)D(\cdot) that takes as input a ciphertext and outputs the corresponding plaintext or ⊥\bot. They sell DD to the adversary. Our threshold decryption systems are equipped with a tracing algorithm that can trace DD to members of the quorum that created it. The tracing algorithm is only given blackbox access to DD and will identify some members of the misbehaving quorum. The parties can then be held accountable, which may discourage them from selling the decoder DD in the first place. Our starting point is standard (non-threshold) traitor tracing, where nn parties each holds a secret key. Every party can decrypt a well-formed ciphertext on its own. However, if a subset of parties J⊆[n]{\cal J} \subseteq [n] collude to create a pirate decoder D(⋅)D(\cdot) that can decrypt well-formed ciphertexts, then it is possible to trace DD to at least one member of J{\cal J} using only blackbox access to the decoder DD. Traitor tracing received much attention over the years and multiple schemes have been developed. In this work we develop the theory of traitor tracing for threshold decryption, where now only a subset J⊆[n]{\cal J} \subseteq [n] of tt or more parties can collude to create a pirate decoder D(⋅)D(\cdot). This problem has recently become quite important due to the real-world deployment of threshold decryption in encrypted mempools, as we explain in the paper. While there are several non-threshold traitor tracing schemes that we can leverage, adapting these constructions to the threshold decryption settings requires new cryptographic techniques. We present a number of constructions for traitor tracing for threshold decryption, and note that much work remains to explore the large design space
    • …
    corecore