51,224 research outputs found

    QPSK Block-Modulation Codes for Unequal Error Protection

    Get PDF
    Unequal error protection (UEP) codes find applications in broadcast channels, as well as in other digital communication systems, where messages have different degrees of importance. Binary linear UEP (LUEP) codes combined with a Gray mapped QPSK signal set are used to obtain new efficient QPSK block-modulation codes for unequal error protection. Several examples of QPSK modulation codes that have the same minimum squared Euclidean distance as the best QPSK modulation codes, of the same rate and length, are given. In the new constructions of QPSK block-modulation codes, even-length binary LUEP codes are used. Good even-length binary LUEP codes are obtained when shorter binary linear codes are combined using either the well-known |u¯|u¯+v¯|-construction or the so-called construction X. Both constructions have the advantage of resulting in optimal or near-optimal binary LUEP codes of short to moderate lengths, using very simple linear codes, and may be used as constituent codes in the new constructions. LUEP codes lend themselves quite naturally to multistage decoding up to their minimum distance, using the decoding of component subcodes. A new suboptimal two-stage soft-decision decoding of LUEP codes is presented and its application to QPSK block-modulation codes for UEP illustrated

    Stopping Set Distributions of Some Linear Codes

    Full text link
    Stopping sets and stopping set distribution of an low-density parity-check code are used to determine the performance of this code under iterative decoding over a binary erasure channel (BEC). Let CC be a binary [n,k][n,k] linear code with parity-check matrix HH, where the rows of HH may be dependent. A stopping set SS of CC with parity-check matrix HH is a subset of column indices of HH such that the restriction of HH to SS does not contain a row of weight one. The stopping set distribution {Ti(H)}i=0n\{T_i(H)\}_{i=0}^n enumerates the number of stopping sets with size ii of CC with parity-check matrix HH. Note that stopping sets and stopping set distribution are related to the parity-check matrix HH of CC. Let H∗H^{*} be the parity-check matrix of CC which is formed by all the non-zero codewords of its dual code C⊥C^{\perp}. A parity-check matrix HH is called BEC-optimal if Ti(H)=Ti(H∗),i=0,1,...,nT_i(H)=T_i(H^*), i=0,1,..., n and HH has the smallest number of rows. On the BEC, iterative decoder of CC with BEC-optimal parity-check matrix is an optimal decoder with much lower decoding complexity than the exhaustive decoder. In this paper, we study stopping sets, stopping set distributions and BEC-optimal parity-check matrices of binary linear codes. Using finite geometry in combinatorics, we obtain BEC-optimal parity-check matrices and then determine the stopping set distributions for the Simplex codes, the Hamming codes, the first order Reed-Muller codes and the extended Hamming codes.Comment: 33 pages, submitted to IEEE Trans. Inform. Theory, Feb. 201

    On the binary weight distribution of some Reed-Solomon codes

    Get PDF
    Consider an (n,k) linear code with symbols from GF(2 sup M). If each code symbol is represented by a m-tuple over GF(2) using certain basis for GF(2 sup M), a binary (nm,km) linear code is obtained. The weight distribution of a binary linear code obtained in this manner is investigated. Weight enumerators for binary linear codes obtained from Reed-Solomon codes over GF(2 sup M) generated by polynomials, (X-alpha), (X-l)(X-alpha), (X-alpha)(X-alpha squared) and (X-l)(X-alpha)(X-alpha squared) and their extended codes are presented, where alpha is a primitive element of GF(2 sup M). Binary codes derived from Reed-Solomon codes are often used for correcting multiple bursts of errors

    Hardness of decoding quantum stabilizer codes

    Full text link
    In this article we address the computational hardness of optimally decoding a quantum stabilizer code. Much like classical linear codes, errors are detected by measuring certain check operators which yield an error syndrome, and the decoding problem consists of determining the most likely recovery given the syndrome. The corresponding classical problem is known to be NP-complete, and a similar decoding problem for quantum codes is also known to be NP-complete. However, this decoding strategy is not optimal in the quantum setting as it does not take into account error degeneracy, which causes distinct errors to have the same effect on the code. Here, we show that optimal decoding of stabilizer codes is computationally much harder than optimal decoding of classical linear codes, it is #P

    Simple Rate-1/3 Convolutional and Tail-Biting Quantum Error-Correcting Codes

    Full text link
    Simple rate-1/3 single-error-correcting unrestricted and CSS-type quantum convolutional codes are constructed from classical self-orthogonal \F_4-linear and \F_2-linear convolutional codes, respectively. These quantum convolutional codes have higher rate than comparable quantum block codes or previous quantum convolutional codes, and are simple to decode. A block single-error-correcting [9, 3, 3] tail-biting code is derived from the unrestricted convolutional code, and similarly a [15, 5, 3] CSS-type block code from the CSS-type convolutional code.Comment: 5 pages; to appear in Proceedings of 2005 IEEE International Symposium on Information Theor

    The weight distribution and randomness of linear codes

    Get PDF
    Finding the weight distributions of block codes is a problem of theoretical and practical interest. Yet the weight distributions of most block codes are still unknown except for a few classes of block codes. Here, by using the inclusion and exclusion principle, an explicit formula is derived which enumerates the complete weight distribution of an (n,k,d) linear code using a partially known weight distribution. This expression is analogous to the Pless power-moment identities - a system of equations relating the weight distribution of a linear code to the weight distribution of its dual code. Also, an approximate formula for the weight distribution of most linear (n,k,d) codes is derived. It is shown that for a given linear (n,k,d) code over GF(q), the ratio of the number of codewords of weight u to the number of words of weight u approaches the constant Q = q(-)(n-k) as u becomes large. A relationship between the randomness of a linear block code and the minimum distance of its dual code is given, and it is shown that most linear block codes with rigid algebraic and combinatorial structure also display certain random properties which make them similar to random codes with no structure at all
    • …
    corecore