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2) in the case where i '" j 

when T = (pm + 1)/. 
for () SIS pm - 2 

occurs (p,,-l + pm _ 2p"'-') times 

occurs (pn-l _ 2pm-l) times. 
for l S �' ::; p - l. 

V. CONCLUSION 

It was shown that the new family consisting of pn/2 (where n 
is even) balanced nonbinary sequences with period pn - 1 can be 

obtained from the modified Kumar-Moreno sequences of the same 

period, and the distribution of correlation values for the family was 

shown to have 1'+ 2 distinct correlation values and the same maximum 

nontrivial correlation value of 1',,/2 + 1 as that of Kumar-Moreno 

sequences. On the other hand, it was shown that the cost of making 

sequences balanced is a decrease of family size in addition to 
the condition that n is an even number. The family size of the 

new sequences is pn/2 which is much smaller than p", that of 

Kumar-Moreno sequences. 
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QPSK Block-Modulation Codes 

for Unequal Error Protection 

Robert H. Morelos-Zaragoza, Member, IEEE, 

and Shu Lin, Fellow, iEEE 

Abstract- Unequal error protection (UEP) codes find applications in 
broadcast cbannels, as well as in otber digital communication systems, 
where messages bave ditTerent degrees of importance, In this correspon­
dence, binary linear UEP (LUEP) codes combined with a Gray mapped 
QPSK signal set are used to obtain new efficient QPSK block-modulation 
codes for unequal error protection. Several examples of QPSK modulation 
codes that have tbe same minimum squared Euclidean distance as the 
best QPSK modulation codes, of the same rate and length, are given. 
In the new constructions of QPSK block-modulation codes, even-length 
binary LUEP codes are used. Good even-length binary LUEP codes are 
obtained wben shorter binary linear codes are combined using either the 
well-known lulu + vi-construction or the so-called construction X, Both 
constructions have the advantage of resulting in optimal or near-optimal 
binary LUEP codes of short to moderate lengths, using very simple linear 
codes, and may be used as constituent codes in the new constructions. 
LUEP codes lend themselves quite naturally to mUltistage decodings up 
to tbeir minimum distance, using the decodings of component subcodes. 
A new suboptimal two-stage soft-decision decoding of LUEP codes is 
presented and its application to QPSK block-modulation codes for UEP 
illustrated. 

Index Terms-Unequal error protection, coded modulation, multistage 
decoding. 

I. I:'lTRODUCTIO:'l 

There are many practical applications in which it is required to 

design a code that protects messages against different levels of noise, 
or messages with different levels of importance over a noisy channel 

of the same noise power level. Examples of such situations are: 

broadcast channels, multiuser channels, computer networks, pulse­
coded modulation (PCM) systems and source-coding systems, among 

others. Such a code is usually said to be an unequal error protection 

(VEP) code. In this correspondence, we propose to use binary linear 

VEP (LVEP) codes [1], combined with Gray mapped QPSK signal 

constellations, to obtain new efficient QPSK block-modulation codes 

with unequal squared Euclidean distances. That is, code sequences 

associated with the most importanl message bits are separated hy 
a squared Euclidean distance (SED) larger than the SED between 

code sequences associated with less important message bits. Several 

examples of LVEP QPSK block-modulation codes, having the same 

minimum squared Euclidean distance (MSED) as that of optimal 

QPSK modulation codes of the same rate and length [21. [31. are 

given. The correspondence is orgauized as follows. Iu Section II, 

basic concepts and two conslructions of LVEP codes based on 

specifying the generator matrix are presented . Section III deals with 

new constructions of QPSK block-modulation codes and introduces 

a new suboptimal two-stage soft-decision (TSD) decoding of LVEP 
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codes. An example is given which illustrates TSD decoding of QPSK 

block-modulation codes for UEP. Finally, in Section IV, conclusions 

on the results are presented. 

II. BASIC CONCEPTS OF LUEP CODES 

When a code is used to provide multiple levels of error protection, 

the conventional definition of minimum distance must be generalized. 

Since different levels of error protection are possible with a UEP 

code, a vector of minimum distances, one for each level of error 

protection, needs to be defined. Let C be an (n. h') block code (not 

necessarily linear) over a finite alphabet ..t, n 2: �'. That is, C is a 

one-to-one mapping from 11' to .-1", i.e. 

where 

,-' 
>-; c(m) EA." 

A� = A x A x . . .  x .-1 , 
----­

k times 

As usual, an element m from ..t k is called a message, and an element 

c( fl.) from C is called a codeword, .-1' is known as the message 

seT. Let A k be decomposed into the direct product of two disjoint 

message subsets, .-1"', i = 1,2, such that 

..t k = A" x .-1 "2 , 

A message m E .1 k can then be expressed as 

m = (m,.m2). mi E _-1Ai, i = 1,2 

where each m, is called the ith message part, i = 1, 2, The separation 

vector of C is defined as the two-tuple ii = (8,,82), where 

i = 1. 2 

and rI(x, x') denotes the Hamming distance between x and x' in A", 
Note that in the definition of Si above, there is no restriction on mj, 
m�, for j # i. Assume that C has both components of its separation 

vector distinct and arranged in decreasing order, i.e., s, > S2. such 

that C is an (n.�·) block code of minimum distance S2. We call 

m I the most important message part and m2 the least important 

message part. 

Code C is said to be an (II, 1;) two-level UEP code of separation 

vector ii = (81,8"), for the message set A k] X A k,. This correspon­
dence concentrates on hinary linear two-level error correcting codes. 

That is, .-1. = {O, I}. For a binary linear two-level error correcting 

code, or binary LUEP code C, each element of the separation vector 

is given by 

fI, � min{wt(c(m)): m, # O. m, E {O. 1 }"}. i = L 2 (I) 

where wt (x) denotes the Hamming weight of vector x. C is called 

an (II,k) two-level LCEP code, of separatiun vector s = (Sl,82), 
for the message space {D. I }" x {O, 1J'2, 

A, LUcP Codes Specified by their Generator Matrix 

In this subsection, constructions of LUEP codes by appending 

eosets of subcodes in binary linear codes are presented. These 

constructions may be used to obtain constituent binary LUEP codes 

which, in conjunction with Gray mapped QPSK signals, yield efficient 

QPSK block-modulation codes for unequal error protection (see 
Section III). 

1) The lulu + vi Construction: For i 1,2, let C, be an 

(lI.k"d,) binary linear code with generator matrix Gi. Define 

the append operation between two vectors, 

U=(1I0.1I],'··,lIn_l) and V=(l'o,I"" " ,l'n-,) 

as 

ilov� (llO,'lI1�···�Un-I,'I'O,1'1,···.Vn 1)' 

Based on C1 and C2• the following code: 

fl(C,.C2) = {wi w = u 0 (u + v),u E CI.v E Cd 

is a (211. �" + 1;2) binary linear code with generator matrix 

and minimum distance d = mill{2dl, max{dl.d2}} [9]. 
Theorem I.' IdC" C2) is a two-level binary LUEP code of separa­

tion vector S = (Sl ,S2), for the message space {0. 1 }kI x {a. 1 }k2, 
where 

and 

81 = min{2dl, max{ d" d2}} 

S2 = min{max{rll.rl2},d2} = d2• 

Proof' Sec [8]. • 
2) Construction X: For i 1. 2, 3, let C; denote a linear 

(lI,.k"d,) binary code, Assume C3 � C2, so that k.3 � �'2 and 

d3 2: d2. Let Cx be the linear code whose generator matrix is 

Gx = (Go\ G2 ) 
G" 

where GI, [G! G!lT and G3 arc the generator matrices of CI, C2, 
and Cl, respectively. (Note that it is required that �'I = k2 - k3.) 

Then Cx is an (Ill + fl3, "1 + k3) linear code of minimum distance 

dx = min {d 3. d I + dol [9]. This method of combining shorter 

linear codes to obtain a linear code of increased length and minimum 

distance is known as Construction X [4], and can be viewed as a 

generali£ation of the lulu + vi construction. By an argument similar 

to that used to prove Theorem I, we can prove the following Theorem 

2. 
Theorem 2: C},- is a Iwo-level binary LUEP code of separation 

vector s = ('�I . . �2), for the message space Al = {O. I} k, X {a, 1 }k3, 
whcre 

and 

• 

III. LUEP QPSK MODULATION CODES 

In this section, a method is presented for combining binary 

two-level LUEP codes with a QPSK signal set to achieve coded 

modulation schemes that offer two values of minirrzum squared Eu­

clidean distance, one for each message part to be protected. In other 

words, symbols of the most important message part are mapped 

onto code sequences with a larger squared Euclidean distance (SED) 

between them than the SED between code sequences corresponding 

to the less important message part. With data transmission over 

an additive white Gaussian noise (AWGN) channel, and a good 

modulation code (i.e., efficient soft-decision decoding and small 

number of nearest neighbors), a smaller probability of bit error is 

achieved for the most important message part than for the rest of the 
message. To approach the error performance given by a minimum 
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2 (II) 4 0 (00) 
�------�--------� 

3 (10) 

Fig. I. A QPSK signal constellation with Gray mapping. 

squared Euclidean distance (MSED), a new suboptimal two-stage 

soft-decision decoding of two-level LUEP codes, that employs their 
trellis structure, is introduced. 

A. Constructions via Gray Mapping 

In a QPSK signal co'!stellation with Gray mapping between labels 

and signal points, the squared Euclidean distance between signal 

points is proportional to the Hamming distance between their lahels. 
This QPSK signal constellation is said to form a second-order 

Hamming space [7]. By mapping 2-bit symbols onto signal points 
in a QPSK signal set, via Gray mapping, (2n, kl + /;2) two-level 

LUEP codes and QPSK signal sets are combined to achieve a block­

coded modulation system that offers two values of minimum squared 
Euclidean distances, one for each message part. Some of the resulting 
QPSK block-modulation codes will he shown to have the same 
minimum squared Euclidean distance as that of optimal QPSK block­

modulation codes of the same rate and length [2], [3], while offering 

in addition a larger minimum squared Euclidean distance between 
code sequences associated with the most importan t message symbols. 

The proposed cunstrudiun is as follows: 
Let Co he a (2n. k, + k2) hinary LUEP code of separation vector 

S = (81,82) for the message space {O, l}kJ X {O, 1}k2. Let 5 denote 
the label set of the unit-energy QPSK signal constellation depicted 
in Fig. I and define the following Gray mapping M between two-bit 

symbols and 5= {0.1.2.3}: 

The set 

00. � 0 
01 � 1 
11 �2 
10 ....., 3. 

C = M(Cb) = {(iPo, <PI,···· <Pn�d : til, 
= M(c2,C2,+,j E S. (cO,(·) ... ·.C2n�tl E Col 

is said to be a two-level LUEP QPSK block-modulation code of 

length fI, dimension k, rate n = /;/211 (bits per dimension), and 
squared Euclidean separation vector l6] 

SSE!) = (281.282) 

where, for i = 1. 2, the ith component of SSED is defined as the 
minimum squared Euclidean distance (MSED) between any two 

signal sequences in C whose corresponding ith message bits differ. 
(In [6], SSED is defined as the MSED between signal sequences 
whose corresponding ith code positions differ.) 

TABLE I 
SOME LUEP QPSK BLOCK-MODULATION CODES 

2n 
4 
8 
8 
8 
10 
10 
10 
10 
12 
12 
12 
12 
12 
14 
14 

k 

5 
5 
6 
5 
7 
7 
8 
6 
6 
9 
9 

10 
7 

14 8 
14 11 
14 11 
14 12 

k, 
I 
I 
4 

k, 
I 
4 
I 
5 
4 
6 
3 
7 
5 
4 
8 
5 
9 
6 

7 
10 
7 

11 

3 2 
4 
3 
3 2 
5 4 
4 2 

6 4 
5 4 
4 
3 
3 
7 4 

3 

4 
4 
2 
2 

R(bits/dim) G,(dS) G,(dB) 
1/2 1.76 0.00 
5/8 3.28 0 27 
5/8 2.03 0.27 
3/4 2.71 0.95 
1/2 3.98 3.01 * 

7/10 3.65 0.64 
7/10 2.40 0.64 
4/5 3.06 1.30 
1/2 4.77 3.01 "* 
1/2 3.98 3.01 
3/4 3.96 0 95 
3/4 2.71 0.95 
5/6 3.32 1.56 
1/2 5.44 3.01 * 

1/2 3.98 3.01 
4/7 4.07 3.10 

11/14 4.21 1.20 
11/14 2.96 1.20 

6/7 3.51 1.75 

* = LUEP QPSK code based on the lulu + vi conslruction. 

Fig. 2. Trellis diagram for an LUEP QPSK code of length 7. 

For AWGN channels at very high signal-to-noise ratios, and given 
the MSED and rate of a modulation code, the asymptotic coding 

gain G is defined as the ralio of the MSED of the coded system to 
the MSED of an uncoded system transmi tting at the same rate (or 
number of hits per signal) [8]. Although this coding gain is never 
realized in practical systems, it is used to provide a measure on the 
improvement in error performance of a coded system with respect to 

a comparable uncoded system. Accordingly, fur each component of 
SSED an asymptotic coding gain is associated. In this correspondence, 
the asymptotic coding gain vector is defined as 

where, for i = 1, 2 

[ 28, ] G, = 1010g)O 4 sin2 (11" /2fl) 
(dB). 

To illustrate this construction method, in Table I some QPSK block­

modulation codes with two levels of error protection are listed. Codes 
labeled with * in the rightmost column of Table I are LUEP QPSK 
modulation codes obtained from the lulu + vi construction, have the 

same minimum squared Euclidean distance as that of optimal QPSK 
block-modulation codes of the same rate and length [2]. [3], and 
provide additional coding gain (or, equivalently, smaller probability 
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10'�----�----------�----�----------�----�----' 

10" 

10.3 

.!! CO a: 
� 10" e 
u:; 
iii 

10.5 

10.6 

10·7 +-�--+-�--+-�--+-�--+-�--+-----+-----+-----1 
3 4 5 6 7 8 9 10 11 

Eb/No 
Fig. 3. Error performance of an LUEP QPSK modulation code of length i. 

o 

(a) 

o 
(h) 

o o 

Fig. 4. Trellis diagrams used in two-stage soft-decision decoding. 

of bit error) for the '" most important message bits. Other codes are 
taken from [to]. 

B. Two-Stage Soft-Decision Decoding 

Let C be an (n.�·) two-level LUEP code of separation vector 
S = (S" "2) for the message space {O.l}"] x {O.l}". Then C 
can be represented as the direct sum of subcodes C, and l'2. 
l' = l', l'2. i.e 

C = {c = c, + C2 : (;, E (' , and 102 E C'2} 

where C2 is an (n. �·2. S2) subcode which contains all codewords 
of minimum weight of C, and C, is an (n. k" d""" ?: 81) subcode 
spanned by a system of coset representatives of C2 in C. Let T, 
be a trellis diagram fur subcode C, of l', i = 1.2. Then a trellis 
diagram of C' can be expressed as the direct product of TI and T2, 
T = T,·- n. That is, states in T are pairs (81.82). where 8, is a 
state in T" for i = 1. 2. The pair ( ., I • �2) is joined to all pairs ( ., ; • .  ,i). 

in such a way that, for i = 1. 2. s, is joined to s: in T, [II]. The 
Viterbi maximum-likelihood decoding algorithm can then be applied 
to T to estimate the most likely codeword of C using soft decisions. 
To reduce the number of computations in soft-decision decoding of 
a modulation code. a technique called multistage decoding is usually 
empluyed. The pruposed suboptimal two-stage soft-decision decoding 
for two-level LUEP codes is as follows: 

I) Using soft decisions (squared Euclidean distance) and the 
Viterbi algorithm, determine the closest path 1'1 in T[ to 
the received sequence, where T{ is a trellis corresponding to 
CI "I, C�, C� a supercode of C2• At this decoding stage, the 
most important message pat1 is decoded. 

2) Using soft decisions and the Viterbi algorithm, determine the 
closest path (o� in 1'1 + T� to the received sequence, to estimate 
the least important message part. Here ('I + T2 indicates that 
the value of ('" obtained in the first decoding stage, is used aI 
each decoding step of the Viterbi algorithm operating on trellis 

T2• 
This two-stage soft-decision decoding is well known, see [2], [5], 

[11]-[ 13]. However, this appears to be the first time, to the best of our 
knowledge. that multistage soft-decision decoding has been explicitly 
used for unequal error protection codes. Although at each stage 
the decoding is maximum-likelihood, the multistage soft-decision 
decoding method described above is suboptimal. At each decoding 
stage, the most likely path is estimated using only part (T;) of the 
trellis T of C. This suboptimal multistage soli-decision decoding is 
known to increase the effective number of nearest neighbors, but this 
results in only a fraction of a decibel in overall coding gain reduction 
(see r21. rl l], [12]). 

C. An Illustrative Example 

In this example we construct an LUEP QPSK block modulation 
code of length 7, and decode it using the suboptimal two-stage 
soft-decision decoding described above. Let CI be a (i. 6. 2) parity­
check code and C2 be a (7. L 7) repetition code. Then apply­
ing the lulu + vi construction, we obtain a (14.7) binary LUEP 
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10.1 

. ......•... ...  

10.2 .... . ............... . . . . ...................... � ..... .............. . .. ,,· .. ····0·· .... · 

.... _, ..•....... 

· ·······0·· .. .. 

10.3 

! .. IX: 
� 10" e 
w -
iii 

10.5 

1O.6i .... ······ ........ ·t · · · 

10·7+-�--+-����-+--�-+--���--+-�--+-�-4 
3 4 5 6 7 8 9 10 11 

EblNo 
Fig. 5. Error performance of two-stage versus maximum-likelihood soft-decision decoding. 

code Cb of separation vector s = (7,4), for the message space 

{O, I} 1 X {O. I} G. With Gray mapping between 2-bit symbols and 
QPSK signals, we obtain an LUEP QPSK code C of length 7, rate 
R = 1/2 (bits per dimension), and squared Euclidean separation vec­
tor SSED = (14,8). The reference uncoded system is BPSK, which 
has an MSED of 4. It follows that the asymptotic coding gain vector 
for this LUEP QPSK block modulation code is G = (5.44.3.01). 

To obtain the trellis for code C', the following permuted version of 

Cb is considered: Repeat each branch of T" the trellis of code C" 
twice. This is the lulul part of the construction, where u E Cl. This 
is equivalent to substituting in T, each branch label ° by 00 and each 
branch label 1 by 11. Then modify trellis T2 of code C2 by appending 

a ° to each branch label, thus constructing the 10lii I part of the code, 
where ii E C2• In this case, this is equivalent to replacing in T2 each 
branch label ° by no and each branch label 1 by 01. The trellis of 
the binary LUEP code Cb is then the direct product of Tl and T2, 
Tl , T2, corresponding to liiliil + 10lvi. with ii E Cl and v E C2. 
Replacing each 2-bit branch label by an element in S = {O, I, 2, 3}, 
the labels for the QPSK signal set in Fig. I, according to the Gray 

mapping M of Section III-A, results in the trellis T shown in Fig. 2. 
Note that the minimum squared Euclidean distance between any 

path in the upper subtrellis and any path in the lower subtrellis of 
Fig. 2 is 2 x 7 = 14, while the minimum squared Euclidean distance 
between paths within a subtrellis is 2 x ,1 = 8. (By a path we mean 
a sequence of QPSK signals whose labels are a path in the trellis). In 

addition, the signal labels used in a subtrellis are from the same 
BPSK signal subconstellation, i.e., {O, 2} for the upper subtrellis 

and {L 3} for the lower subtrellis. Soft-decision decoding can now 

be performed using the Viterbi algorithm with squared Euclidean 

distances as branch metrics. 
Consider maximum-likelihood soft-decision decoding. At high 

signal-ta-noise ratios on an AWGN channel, the probability of a 

block error p, is dominated by the probability of taking a path 

in the trellis at minimum squared Euclidean distance, and can be 

approximated by 

p(bl � 'V(d . )Q (a"fdmin) E """'.1 'JIlIn 
20-

where N( dmin) is the number of paths in the trellis at MSED and a2 
is the average signal power. For this LUEP QPSK block-modulation 
code, the probability of a block error depends on what message part 
is being considered. For the least important message part (6 bits). 
we have 

p�;) = 21Q (0,;2) + 35Q(2a) + 7Q (avis) 
while for the most important message part (I bit), 

p��) = 64Q (0vf:3.5) . 

In both of the above expressions, zero-mean unit-variance additive 

white Gaussian noise is assumed. Note that the above expressions 
are upper bounds on the probabilities of a bit error, P'l and P'2' in 
the most and least important message parts, respectively. In Fig. 3, 
we plot the probability of a bit error for uncoded BPSK and compare 

it with computer results on the bit error rate of the least important 
message part P" and of the most important message part, P'l' The 
results of Fig. 3 were obtained using a one-step maximum-likelihood 
soft-decision decoding the Viterbi algorithm and the trellis diagram of 
Fig. 2. From Fig. 3, the simulated coding gains at probability of a bit 
error of 10-5 are approximately Gj = 3.8 (dB) and G� = 2.2 (dB). 
for the most and least important bits, respectively. These numbers 

agree well with the expected coding gains G� = 4.2 (dB) and G; = 

2.1 (dB), which are obtained from the asymptotic coding gain vector 
and taking into account the effects of the number of Ilearest neighbors 
(64 and 21, respectively), using the well-known rule of thumb [14] 

which states that, at probability of a bit error of 10-5, doubling the 
number of nearest neighbors results in about 0.2-dB coding loss. 

Attention is now turned to two-stage soft-decision decoding. In the 
first stage of decoding, trellis T;, with branch labels as shown in 
Fig. 4(a), is used to decode the most important message bit. Note 
that, from the point of view of decoding the most important bit, 
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the number of nearest neighbors has doubled, from 64 for one-step 
maximum-likelihood soft-decision decoding to 128 for two-stage soft­

decision decoding. In the second decoding stage we use To, modified 
according to the decision in the previous step. If the decoded most 

important bit in the lirst decoding step is a 0, then we use the trellis 

T2 shown in Fig. 4(b). If the decoded message bit in tbe first stage is 

a I, then we modify T2 replacing each branch label 0 by 1 and each 
branch label 2 by.3. The computer-simulated error performance of this 

two-stage soft-decision decoding (TSD) is presented in Fig, 5, and 

compared to one-stage maximum-likelihood soft-decision decoding 

(MLD). At a bit error rate of 10-' for the most important message 

bit. TSD requires about 0.1 dB more Eoj No than with single-stage 

MLD. This is caused hy the twofold increase in the number of 

nearest neighbors in the first decoding stage, as mentioned before. 

It can be seen from Fig. 5 that the error performance of the second 

decoding stage, p" (TSD), is very close to that of MLD. Once a 

correct decision on the most important message bit is made, the 
subtrellis used in TSD to decode the least important message bits is 

the same as in MLD. Therefore, at high EI,jSo, about the same error 

performance is obtained. These results agree with the observation 
made in [12] that degradation of overall coding gain, with two-stage 

soft-decision decoding, is negligible if the MSED of trellis diagram 

Tl of subcode C[ is larger than the MSED of the trellis diagram T 
of the supercode. 

IV. CONCLUSIONS 

A new construction of QPSK block-modulation codes for unequal 

error protection of two types of messages was introduced. These 

codes offer two values of minimum squared Euclidean distance 

(MSED) between coded signal sequences associated with each mes­

sage patt. That is, coded signal sequences associated with the most 

important message part are separated by a squared Euclidean distance 

(SED) larger than the MSED for the code. Whcn these signal 

sequences are transmitted over an AWGN channel, a larger SED 

results in a :;rrwller probability 0/ error for the most important 

message symbols. A Gray mapped QPSK signal set was used to 
obtain a second-order Hamming space in which (2n. k) LUEP 
codes of separation vector s = (81 .82) are mapped onto (11, k) 
LUEP QPSK modulation codes of squared Euclidean separation 

SSED = (281, 2s2). For short lengths, some of the new QPSK block­

modulation codes have the same coding gain as that of optimal QPSK 
modulation codes of the same rate and length [3J. A new suboptimal 

two-staRe soft-decision decodinR for LUEP codes was presented 
and an illustrative example showed its application in decoding 

QPSK block-modulation codes for unequal error protection. The 

results suggest that, with two-stage soft-decision decoding of QPSK 
block-modulation codes for UEP, both codinR Rains are reduced by 

only a fraction of a decibel, in the same way that overall coding 

gain degrades for conventional (equal error protection) modulation 

codes. 
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The Nonexistence of Some 

Five-Dimensional Quaternary Linear Codes 

R. Daskalov and E. Metodieva 

Abstract---Let 114 (I.'. d) be the smallest integer n, such that a quaternary 
linear [11. k, d; 4]-code exists. It is proved that n,(5, 20) = 30, 114(5, 42) 
:>: 59,114(5,45) :>: 63, "4(5,64) :>: 88, "4(5, 80) = 109,114(5,140) :::: 189, 
11.,(5,143) :>: 193,714(5, Hi8) :>: 226,1/4(5,180) :::: 242, 714 (5,183):>: 246, 
fl4 (5; 187) = 251, 

Index Tenns-Quaternary linear codes, bounds on minimum length, 

I. INTRODUCTION 

Let GF( 1]) denote the Galois field of g elements, and let F (n, q) 
denote the vector space of all ordered 11 -tuples over GF( q), A linear 

code C of length 11 and dimension k over GF( IJ.) is a k-dimensional 

subspace of Hn, g). Such a code is called an [71, �:, d: q] -code if its 

minimum Hamming distance is d. 
A central problem in coding theory is that of optimizing one of 

the parameters II, k, and d for given values of the other two. Two 

equivalent version are : 
Problem 1: Find dq(n, k), the largest value of d for which there 

exists an [11, k, d; g]-code. 

Prublem 2: Find n q (k, d), the smallest value of n for which there 

exists an [n, /"d;g]-code. 
A code which achieves one of these two values is called optimaL 
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