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Finding the weight distributions of block codes is a problem of theoretical and practi-

cal interest. Yet the weight distributions of most block codes are still unknown except for

a few classes of block codes, b_ this article, by using the inclusion and exclusion principle,

an explicit formula is derived which enumerates the complete weight distribution of an

(n,k,d) linear code using a partially known weight distribution. This expression is analo-

gous to the Pless power-moment identities-a system of equations relath_g the weight dis-

tribution of a linear code to the weight distribution of its dual code.

Also, an approximate formula for the weight distribution of most linear (n,k,d) codes

is derived. It is shown that for a given linear (n,k,d) code over GF(q), the ratio of the

number of codewords of weight u to the number of words of weight u approaches the

constant Q = q-(n-k) as u becomes large. A relationship between the randomness of a

linear block code and the minimum distance o fits dual code is given, and it is shown that

most linear block codes with rigid algebraic and combinatorial structure also display cer-

tain random properties which make them similar to random codes with no structure at

all.

I. Introduction

Finding the weight distribution of block codes is a problem

of theoretical and practical interest. When an incomplete

decoding algorithm is used (e.g., bounded distance decoding),

the probabilities of correct decoding, decoding error, and

decoding failure can all be expressed in terms of the code's

weight enumerator [2].

Let C be a linear (n,k,d) code over GF(q), and C ± be its

(n,n- k,d ±) dual code. Let G be the generator matrix of C.

Let the number of codewords of weight u be denoted by A u.

MacWiUiams [3] showed that the weight enumerator of the

dual C± of a linear code C is given by a linear transformation

of the weight enumerator of C. Pless [1] introduced the

power-moment identities-a system of equations relating the

weight distribution of a linear code to the weight distribution

of its dual code. In this article, by using the inclusion and

exclusion principle, it is shown in Section III that the com-

plete set of Au's , 0 <<. u <_ n, can be generated if only the

partial set ofAu's, d <<.u <_ n-d ±, is known.

By modifying the techniques used in the above derivation,

an approximate formula for A u of most (n,k,d) nonbinary

linear codes is derived. This formula, together with the approx-

imate formula for A u of binary linear code derived by Kasami

et al. [4], shows that the distribution q-(n-4¢) (n) (q _ 1) u is a

close approximation to A u for most (n,k,d) codes over GF(q).
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The intrinsic randomness of a linear (n,k,d) block code over

GF(q) is implicit in the Pless identities which show that the
vth binomial moment, for v = 0, I .... , d ± - 1, is independent

of the code and is equal to that of the whole vector space, i.e.,

the (n,n, 1) code (GF(q)) n. In this article, an explicit relation-

ship between the randomness of a linear block code and the
minimum distance of its dual code is given, and it is shown

that for large u,

no. of codewords of weight u

no. of vectors of weight u

total no. of codewords
--+

total no. of vectors

def
q-(n-k) = Q (1)

Equation (1) states that if the vector space (GF(q)) n is parti-

tioned into weight classes according to the Hamming weights
of the vectors, then the ratio of the number of codewords in

a weight class to the number of vectors in that weight class

approaches a constant Q, where Q is the ratio of the size of the
code to the size of the whole vector space (GF(q)) n. This

remarkable relationship shows that most linear block codes

with rigid algebraic and combinatorial structure also display

certain intrinsic random properties which make them similar
to random codes with no structure at all.

II. Mathematical Preliminaries

In this section combinatorial and coding techniques re-

quired to derive the results in later sections are introduced.

A. Principle of Inclusion and Exclusion [5]

Let × be a set of N objects, and P(I), P(2) ..... P(u) be a

set of u properties. Let N(/l, i2..... it) be the number of

objects with properties P(il), P(i2) ..... P(i,). The number of
objects N(0) with none of the properties is given by

N(O) = N- Z N(i) + E N(i,'i2) +""

i il <i2

+(-1( _ N(i,i: ..... i)+...
i I <i2..,<i r

+ (-1) u N(1,2, 3 ..... u) (2)

There are u + 1 terms in the RHS of Eq. (2), with the 0th term

representing the total number of objects in X. If the RHS of

Eq. (2) is truncated at the rth term, where r is even, the trun-
cated sum represents a lower bound on N(0). Similarly, if the

RHS of Eq. (2) is truncated at an odd term, an upper bound

on N(0) is obtained. Thus the maximum error magnitude

introduced by the inclusion and exclusion formula by truncat-

ing the sum at the rth term does not exceed the magnitude of

the rth term. This fact will be used later to upper bound the

magnitude of the errors of the approximate weight distribu-
tion formula.

B. Facts on Coding Theory

A linear (n,k,d) code over GF(q) can be generated by a
k × n generator matrix G, not necessarily unique and such that

rank(G) = k. Let l be the maximum number such that no I or
fewer columns of G add to zero. Then

t < k (3)

Equality in Eq. (3) is achieved in the case of maximum dis-

tance separable (MDS) codes. Since G is the parity-check

matrix of Cl, I = d I - 1. Let cOl/l , coli2 ..... col{/, be any j
particular columns of G,/' _< l _< k. It is obvious that there
exists a k × n generator matrix G' of C and a k X k non-

singular matrix K such that

G' = KG (4)

and col/ , coli2 ..... col// of G' form a k X j submatrix of the
form (.._1).This fact guarantees that the number of codewords

with zeros on the i lth, i2th, ..., iith coordinates equals q_J
for/< l.

III. Derivation of Formula

Let_c be a codeword of C with Hamming weight u, u 1>n- l.

Let the coordinates of£ be indexed by (0,1,... , n - 1). Then

c_has v zeros (v _l), where v = n- u. Let V be a set of v coor-

dinates, IVI = v. Let {il,i 2 ..... ij) C__{0,1 ..... n- 1) - V

be a set of/" coordinates. Define S(ipi 2 ..... ij) = {c_ : c E C

and c has zeros in V U (il,i 2..... i/}}. A codeword c ES(ip

i2 ..... t}) always has at least _,+/" zeros. Let

r/. = E Z ]S(l'l,i2 ..... 5)[

IVl=v i I <i2 <...<i ]

That is, T/ is the /th term in the inclusion and exclusion
formula. From the discussion in Section II.B, the number of

codewords in S(ipi 2, . . . , ii) is

IS(il,i 2..... _)1 = qk-V-j for O<_j<_l- v (5)
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There are (nv) ways to choose V from 0, 1.... , n - 1 and for

each choice of V there are (7.) (u = n - v) ways to choose il,
/2 ..... _. from the remaining set of u = n - v coordinates.
Thus

TJ= j

For l - v + 1 _j _<n- d- v, the number of zeros in the code-

words of S(il,i 2 ..... ii) exceeds I and therefore/}1, cannot be

expressed using Eq. (5). In this case T/ is evaluated by count-

ing the number ofS(iv i2 ..... ij) each codeword can contrib-
ute to. For a given v and j, the codewords that can contribute

to T/ are the zero codeword and the codewords of weight
n - m, v +j_m <<,n- d. For the zero codeword, there are (n)
ways of choosing V and (u) ways of choosing the remainingj

/
zero coordinates• For a codeword of weight n - m (m zeros),

v+j_m_n-d, there are ('_ ) ways to choose Vand( j)m-v
ways to choose the j remaining zero coordinates. There are

An_ m codewords of weight n - m. Thus

T� = (_) (_) + _ (rnvv ) (m - v) Z
m=v"'J j n-m

for l-v+l@j<_n-d-v (7)

For n - d- v + 1 _/'_<n- v, the number of zeros in the code-

words of S(i l, i2 ..... 3) exceeds n - d + 1. Since the code

has minimum distance d, S(i l, i2 ..... ij) = {0__).Thus,

IS(ip i2 ..... ij)[ = 1

for n-d-v+l<<.j<_n-v (8)

As in the case for 0 _<j _ l - v, there are (vn ) ways to choose V

and for each V there are (7.) ways to choose il, i2, . . . , t}. Thus

for n-d-v+ l _j<_n-v (9)

By the principle of inclusion and exclusion, the number of

codewords of weight u (v zeros), which is denoted by A u, is
given as follows:

U

Au = Z (-1)i_ (10)
/=0

Although the above derivation is based upon the assumption

that u _ n - l, it is not hard to show that Eq. (10) is indeed

true for allu, 0_u_n. Ford_u_n-l+ 1, Eq.(10) is

reduced to the identity A u = A u (proof omitted).

It is observed from the above that only the derivation of

T/'sinthe rangel-v+l_j_n-d-v(l+l_v+j_n-d,
where v + j is the number of zeros in a codeword) requires

prior knowledge of An_ m's (weight enumerator of codewords

with m zeros), where v +j _m _n - d. Thus the complete set

of A u's, 0 <<,u _ n, can be generated if only the partial set of

Au's, d _ u _ n - d±, is known. An example which generates
the weight distribution of the (7,4) Hamming code is given in

Appendix A.

The above results are summarized in the following theorem

and corollary.

Theorem 1. If C is an (n,k,d) code over GF(q), then

Au = _ (-1)/_
/=0

where

for n-dt + l _u_n

7}/ = v for O_j_l-v

+ A
TJ m = v+j J

n--_t

for l-v+ l <_/_n-d-v

for n-d-v+ l <.j_n-v

Corollary 1. If A u, d <<,u <_ n - d ±, of an (rtk,d) lin-

ear code C over GF(q) are given, the remaining Au's, n - d L
+ 1 _< u _< n, can be evaluated explicitly using the equations

given in Theorem 1.

IV. Approximate Formula

Theorem 1 and Corollary 1 in Section III enable one to

enumerate the complete weight distribution Au, 0 <_ u <_ n,

given that the partial set ofAu, d <_u <_n - d ±, is known. This

partial set of A u is required in the calculation of T/, 1 - v + 1
j _< n - d - v. In cases in which knowledge of this partial set

is not available, one can still derive an approximate fornmla
!

for A u as follows. For a given coordinate set V, IV[ = v, let A v
denote the number of codewords with exactly v zeros in V.
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Using a similar derivation as in Section 11I, A V can be repre-

sented by the inclusion and exclusion principle as follows:

Av = IS(0) 1+(-1) Z IS(il)l+""

i I

+(-1) r _ IS(i,,i2 ..... /)[+...

i I <i2 <...<i

is added to and subtracted from Eq. (12), one has

, (q - 1)"
Av - qZ-Z +E L+L_ (13)

If (/UV)q _ (/--_+1)' that is, if u _ [(q + 1)/q] (n - l) - 1, E 2 is a
sum of terms with alternate signs and decreasing magnitude.

Then IE21_< (iv) qk-t. Thus

+ (-1) n-v S(i v iz ..... in_v)

,v tu) kv,__, (-I)/
1=o J

n-._--v

+ Z (-i),Z
.,/=/--v + 1 il <i2<...<_.

Is(i,, _2..... _/)i

I'I--V

/= n--d-v+ L

(11)

If the above inclusion and exclusion formula is truncated at

the (l - v)th term, Eq. (7) is reduced to

t _ E 14Av (_1) / qk-V--j + EL (12)
/=0 i

where

: (El (_l)gV u
l-- v

n-_-v

+Z Z
/=z-_+1q<i2<...<_

(-1) / IS(i v i2 ..... /.)1

nv (7)+ Z (-I)/
/= n--cl-v+ l

From the discussion in Section II.A, IEl I _ ( u ) qk-t If
l-v

i= t--v

, _ (q - 1) u
A v +E (14)

qn-k

s

where E = E 1 + E 2 and IEI _ 2 (_.u)qk-t. Av can thus be
approximated by [(q - 1) u]/qn-k, and the goodness of approx-

imation depends on how small the ratio R = E/[(q - 1)u

X q-(n-k)] is. By using the upper bound on IEL, an upper

bound on this ratio is given by

R_
(q - 1)u

Since v _ l, there are (vn) = (n) ways to choose v zeros from
{ 0, 1 ..... n - 1 ). Then A u can be approximated by the fol-

lowing expression:

z (:)A. = Av _ q-(..o,) (q- 1)" (15)
IVl:n-u

for u ;_ max (n- l, [(q + 1)/q](n- l)- 1 ).

Strictly speaking, the derivation of Eq. (15) is only valid
for u ;_ max (n -l, [(q + 1)/q](n-l)- 1).However, it is

observed that in most cases, q-(n-k) (nu)(q _ 1)u is also a close

approximation to A u for u considerably smaller than n - l (as
in the case of Reed-Solomon codes). The upper bound of R

derived above has a denominator term (q - 1)u and this indi-

cates that this approximation formula is good for nonbinary

linear codes, and is not useful for binary linear codes. The

looseness of this approximation for binary linear codes is
best illustrated by extended binary codes which only have

even weights. However, it is observed that for most extended

binary codes, the number of codewords of weight u, where u
is even and is not close to 0 or n, can be approximated by the

sum of two adjacent binomial coefficients 2_(n_k_l) (u_l).-1

+ 2-(n-k-l) (nul). This is obvious since an (n,k,d) extended
binary code can always be constructed from an (n - 1,k,d - 1)
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binary code by appending each codeword with a parity bit.

The weight distribution and its approximation for the (128,

113,6) binary extended BCH code are given in Fig. 1. In the

case of binary primitive codes, Kasami et al. [4] generalized
Sidel'nikov's approach [6] and showed that the weights of

most binary primitive codes have approximate binomial dis-

tribution. For nonbinary linear codes, the upper bound on

R shows that the approximation in Eq. (11) is particularly

good for codes with large alphabet sets. The upper bound on

R for the (31,15,17) Reed-Solomon code over GF(32) is given

in Fig. 2. The weight distribution and its approximation (using

Eq. 11) of the (31,15,17) Reed-Solomon code are given in

Fig. 3.

V. Randomness of a Linear Block Code

In this section, the approximation for the weight distribu-

tion of linear codes will be used to investigate the randomness

of linear block codes. It was shown in [7] that in the case of

MDS codes, where both the weight distribution of the codes

and the weight enumerators of decodable words are known,

the following relationships are obtained:

no. of MDS codewords

of weight u

no. of vectors of weight u

total no. of MDS codewords

total no. of vectors

and

q-(n-k ) (16)

no. of decodable words

of weight u

no. of vectors of weight u

total no. of decodable words

total no. of vectors

q-(n-k) V(t) (17)

where Vn(t ) is the volume of the Hamming sphere of the
codes. In this article, by using the approximation in Eq. (11),

Eq. (12) is generalized to all linear block codes. That is, for an

(n,k,d) linear code C,

no. of codewords of weight u
no. of vectors of weight u

= q-(n-k)

total no. of codewords

total no. of vectors

(18)

for u I> max (n - l, [(q + l)/q](n- l)- 1 ). As was discussed

in Section III, in the case of nonbinary block codes, the

goodness of the approximation in Eq. (14) depends upon the

ratio R = E/[(q - 1) u q-(n-k)], which is upper bounded by

[2(nU_l)q k-l]/(q - 1) u. A larger weight u and/or a larger d -Lof
C correspond to a better approximation of the weight distribu-

tion of C by the formula (un) (q - 1)u. This in turn implies that
if d I of C is large, the ratio of the number of codewords of

weight u to the number of words of weight u approaches

q-(n-k) more quickly as u gets large. This result is, in some
way, analogous to Hess power-moment identities [1] which

state that for a linear (n,k,d) block code, there are d± (0, 1,

... , d ± - 1) binomial moments that are independent of the

code and are equal to the binomial moments of the whole

vector space.

Vl. Conclusion

In this article, by using the inclusion and exclusion princi-

ple, an explicit formula which enumerates the complete weight
distribution of an (n,k,d) linear code using a partially known

weight distribution is derived. Using similar combinatoric and

coding techniques an approximate formula for the weight dis-

tribution of most linear (n,k,d) codes is derived. A relationship
between the randomness of a linear block code and the mini-

mum distance of its dual code is given, and it is shown that

most linear block codes with rigid algebraic and combinatorial

structure also display certain random properties which make
them similar to random codes with no structure at all. The

results presented can help to simplify the calculations of the
probabilities of correct decoding, decoding error, and decod-

ing failure which are all expressed in terms of the code's

weight enumerator.
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Au (Exact)

1 000e+000

0 000e+000

0 000e+000

3 414e+005

8 729e+007

1 384e+010

1 448e+012

1 061e+014

5 697e+015

2 315e+017

7 303e+018

1 827e+020

3 683e+021

6 070e+022

8 272e+023

9 413e+024

9 020e+025

7 332e+026

5 087e+027

3 029e+028

1 555e+029

6 914e+029

2 672e+030

8 998e+030

2 649e+031

6 834e+031

1 548e+032

3 082e+032

5 406e+032

8 359e+032

1 141e+033

1 374e+033

1 462e+033

A'u (Approx.)

1 000e+000

4 961e-001

6 511e+002

3 310e+005

8 726e+007

1 385e+010

1 448e+012

1 061e+014

5 697e+015

2 315e+017

7 303e+018

1 827e+020

3 683e+021

6 070e+022

8 272e+023

9 413e+024

9 020e+025

7 332e+026

5 087e+027

3 029e+028

1 555e+029

6 915e+029

2 672e+030

8 998e+030

2 649e+031

6 834e+031

1 548e+032

3 082e+032

5 406e+032

8 359e+032

1 141e+033

1 374e+033

1 462e+033

* Au = 0 for odd u.

**Au = A_{128-u} and A'u = A'_{128-u}.

Fig. 1. Weightdistributionanditsapproximationofthe(128,113,6)
BCH code.
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22

23

24

25

26

27

28

29

30

31

2 74943144e-024

1 50775270e-024

4 37734673e-025

8 94296586e-026

1 44241389e-026

1 95423782e-027

2 31146419e-028

2 44993596e-029

2 37090920e-030

2 12446863e-031

1.78181347e-032

1.41082139e-033

1.06190837e-034

7.64152968e-036

5.28215447e-037

3.52143591e-038

Fig. 2. Upper bound on R for the

(31,15,17) RS code.
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0 000e+000
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0 000e+000

0 000e+000

0 000e+000

0.000e+000
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0.000e+000

8.221e+009
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4.676e+013

7.646e+014

1.076e+016
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4.811e+020
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A'u (Approx.)

8.272e-025
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2.404e-014
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5.405e-010

5.984e-008
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1.780e+000
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1.171e+019

8.380e+019

4.811e+020

2.130e+021

6.832e+021

1.412e+022

1.412e+022

Fig. 3. Weight distribution and its approximation for the

(31,15,17) RS code over GF(32).



Appendix A

An Example Which Generates the Complete Weight Distribution of the

(7,4,3) Hamming Code from an Incomplete Weight Distribution

This example illustrates the use of Theorem 1 to evaluate the complete weight distribution of the (7,4,3) Hamming code C. It

is given that C has minimum distance d = 3 and C ± has minimum distance d I = 4. According to Theorem 1 it is also required to

know the partial weight distribution A u, 3 = d ¢ u _ n - d ± = 3. It is given that A 3 = 7,Aa,A s,A 6, andA 7 are now evaluated
as follows:

4 7
7, 4 (_-_(4)+(3)7 , (3)(_)' 7 4 nd1. u =4(v=3). In this case To ,T 1,T 2,T a,andT 4 are (3) (o)2, ,3/ xl (3)(3),a (73) (_), respectively. Thus,

A 4 = 70-168+210-140+35 = 7

2. u = 5 (v = 2). In this case To, T_, T:, T3, T4, and Ts are (_)(8)22, (72) (_)2, (_)(Sz) + (4)7, (_)(s), (_)(s), and (_)(ss),

respectively. Thus,

A s = 84-210+252-210+ 105-21 = 0

(l) (s)' and3. u=6(, = 1). Inthiscase To,TI,T2,Ta, T4, Ts,andT6 areCl)(o6)23,(71)(_)22,(_)(_)2,(T1)(_)+(4)7,(_)(]), 76

(71) (6), respectively. Thus,

A 6 = 56-168+210-168+105-42+7 = 0

4. u = 7 (v = 0). In this case TO, T1 , T2 , Ta, T4, Ts , T6 , and T7 are (2)24, (71)23 ' (2)272, (3)2,7 (]) + (_)7, (_), (_), and (_), _espec-

tively. Thus,

A 7 = 16-56+84-70+42-21+7-1 = 1
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