400 research outputs found

    Robust Model Predictive Control for Signal Temporal Logic Synthesis

    Get PDF
    Most automated systems operate in uncertain or adversarial conditions, and have to be capable of reliably reacting to changes in the environment. The focus of this paper is on automatically synthesizing reactive controllers for cyber-physical systems subject to signal temporal logic (STL) specifications. We build on recent work that encodes STL specifications as mixed integer linear constraints on the variables of a discrete-time model of the system and environment dynamics. To obtain a reactive controller, we present solutions to the worst-case model predictive control (MPC) problem using a suite of mixed integer linear programming techniques. We demonstrate the comparative effectiveness of several existing worst-case MPC techniques, when applied to the problem of control subject to temporal logic specifications; our empirical results emphasize the need to develop specialized solutions for this domain

    Stability and convergence in discrete convex monotone dynamical systems

    Full text link
    We study the stable behaviour of discrete dynamical systems where the map is convex and monotone with respect to the standard positive cone. The notion of tangential stability for fixed points and periodic points is introduced, which is weaker than Lyapunov stability. Among others we show that the set of tangentially stable fixed points is isomorphic to a convex inf-semilattice, and a criterion is given for the existence of a unique tangentially stable fixed point. We also show that periods of tangentially stable periodic points are orders of permutations on nn letters, where nn is the dimension of the underlying space, and a sufficient condition for global convergence to periodic orbits is presented.Comment: 36 pages, 1 fugur

    On the Convergence of Finite Element Methods for Hamilton-Jacobi-Bellman Equations

    Get PDF
    In this note we study the convergence of monotone P1 finite element methods on unstructured meshes for fully non-linear Hamilton-Jacobi-Bellman equations arising from stochastic optimal control problems with possibly degenerate, isotropic diffusions. Using elliptic projection operators we treat discretisations which violate the consistency conditions of the framework by Barles and Souganidis. We obtain strong uniform convergence of the numerical solutions and, under non-degeneracy assumptions, strong L2 convergence of the gradients.Comment: Keywords: Bellman equations, finite element methods, viscosity solutions, fully nonlinear operators; 18 pages, 1 figur
    corecore