7,004 research outputs found

    Vertex Arboricity of Toroidal Graphs with a Forbidden Cycle

    Full text link
    The vertex arboricity a(G)a(G) of a graph GG is the minimum kk such that V(G)V(G) can be partitioned into kk sets where each set induces a forest. For a planar graph GG, it is known that a(G)3a(G)\leq 3. In two recent papers, it was proved that planar graphs without kk-cycles for some k{3,4,5,6,7}k\in\{3, 4, 5, 6, 7\} have vertex arboricity at most 2. For a toroidal graph GG, it is known that a(G)4a(G)\leq 4. Let us consider the following question: do toroidal graphs without kk-cycles have vertex arboricity at most 2? It was known that the question is true for k=3, and recently, Zhang proved the question is true for k=5k=5. Since a complete graph on 5 vertices is a toroidal graph without any kk-cycles for k6k\geq 6 and has vertex arboricity at least three, the only unknown case was k=4. We solve this case in the affirmative; namely, we show that toroidal graphs without 4-cycles have vertex arboricity at most 2.Comment: 8 pages, 2 figure

    Counting unlabelled toroidal graphs with no K33-subdivisions

    Get PDF
    We provide a description of unlabelled enumeration techniques, with complete proofs, for graphs that can be canonically obtained by substituting 2-pole networks for the edges of core graphs. Using structure theorems for toroidal and projective-planar graphs containing no K33-subdivisions, we apply these techniques to obtain their unlabelled enumeration.Comment: 25 pages (some corrections), 4 figures (one figure added), 3 table

    Slimness of graphs

    Full text link
    Slimness of a graph measures the local deviation of its metric from a tree metric. In a graph G=(V,E)G=(V,E), a geodesic triangle (x,y,z)\bigtriangleup(x,y,z) with x,y,zVx, y, z\in V is the union P(x,y)P(x,z)P(y,z)P(x,y) \cup P(x,z) \cup P(y,z) of three shortest paths connecting these vertices. A geodesic triangle (x,y,z)\bigtriangleup(x,y,z) is called δ\delta-slim if for any vertex uVu\in V on any side P(x,y)P(x,y) the distance from uu to P(x,z)P(y,z)P(x,z) \cup P(y,z) is at most δ\delta, i.e. each path is contained in the union of the δ\delta-neighborhoods of two others. A graph GG is called δ\delta-slim, if all geodesic triangles in GG are δ\delta-slim. The smallest value δ\delta for which GG is δ\delta-slim is called the slimness of GG. In this paper, using the layering partition technique, we obtain sharp bounds on slimness of such families of graphs as (1) graphs with cluster-diameter Δ(G)\Delta(G) of a layering partition of GG, (2) graphs with tree-length λ\lambda, (3) graphs with tree-breadth ρ\rho, (4) kk-chordal graphs, AT-free graphs and HHD-free graphs. Additionally, we show that the slimness of every 4-chordal graph is at most 2 and characterize those 4-chordal graphs for which the slimness of every of its induced subgraph is at most 1

    Counting and Enumerating Crossing-free Geometric Graphs

    Full text link
    We describe a framework for counting and enumerating various types of crossing-free geometric graphs on a planar point set. The framework generalizes ideas of Alvarez and Seidel, who used them to count triangulations in time O(2nn2)O(2^nn^2) where nn is the number of points. The main idea is to reduce the problem of counting geometric graphs to counting source-sink paths in a directed acyclic graph. The following new results will emerge. The number of all crossing-free geometric graphs can be computed in time O(cnn4)O(c^nn^4) for some c<2.83929c < 2.83929. The number of crossing-free convex partitions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free perfect matchings can be computed in time O(2nn4)O(2^nn^4). The number of convex subdivisions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free spanning trees can be computed in time O(cnn4)O(c^nn^4) for some c<7.04313c < 7.04313. The number of crossing-free spanning cycles can be computed in time O(cnn4)O(c^nn^4) for some c<5.61804c < 5.61804. With the same bounds on the running time we can construct data structures which allow fast enumeration of the respective classes. For example, after O(2nn4)O(2^nn^4) time of preprocessing we can enumerate the set of all crossing-free perfect matchings using polynomial time per enumerated object. For crossing-free perfect matchings and convex partitions we further obtain enumeration algorithms where the time delay for each (in particular, the first) output is bounded by a polynomial in nn. All described algorithms are comparatively simple, both in terms of their analysis and implementation

    Bipartite Minors

    Full text link
    We introduce a notion of bipartite minors and prove a bipartite analog of Wagner's theorem: a bipartite graph is planar if and only if it does not contain K3,3K_{3,3} as a bipartite minor. Similarly, we provide a forbidden minor characterization for outerplanar graphs and forests. We then establish a recursive characterization of bipartite (2,2)(2,2)-Laman graphs --- a certain family of graphs that contains all maximal bipartite planar graphs.Comment: 9 page

    Structural properties of 1-planar graphs and an application to acyclic edge coloring

    Full text link
    A graph is called 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we establish a local property of 1-planar graphs which describes the structure in the neighborhood of small vertices (i.e. vertices of degree no more than seven). Meanwhile, some new classes of light graphs in 1-planar graphs with the bounded degree are found. Therefore, two open problems presented by Fabrici and Madaras [The structure of 1-planar graphs, Discrete Mathematics, 307, (2007), 854-865] are solved. Furthermore, we prove that each 1-planar graph GG with maximum degree Δ(G)\Delta(G) is acyclically edge LL-choosable where L=max{2Δ(G)2,Δ(G)+83}L=\max\{2\Delta(G)-2,\Delta(G)+83\}.Comment: Please cite this published article as: X. Zhang, G. Liu, J.-L. Wu. Structural properties of 1-planar graphs and an application to acyclic edge coloring. Scientia Sinica Mathematica, 2010, 40, 1025--103
    corecore