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Abstract

We provide a description of unlabelled enumeration techniques, with complete proofs, for graphs that can
be canonically obtained by substituting 2-pole networks for the edges of core graphs. Using structure theo-
rems for toroidal and projective-planar graphs containing no K3,3-subdivisions, we apply these techniques
to obtain their unlabelled enumeration.
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1. Introduction

We are interested in non-planar (finite, simple) graphs that can be embedded on the torus or
the projective plane. By Kuratowski’s theorem [10], a graph G is planar if and only if it contains
no subdivision of K5 or of K3,3, and, by Wagner’s theorem [14], a graph G is planar if and only
if it has no minor isomorphic to K5 or K3,3. Here, we restrict our attention to the graphs with
no K3,3-subdivisions. Since K3,3 is a 3-regular graph, it is possible to see that the graphs with
no K3,3-subdivisions are precisely the graphs with no K3,3-minors. Therefore we may refer to
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them as to K3,3-free graphs. Characterizations of K3,3-free toroidal graphs in terms of forbidden
minors and forbidden subdivisions are given by Gagarin, Myrvold and Chambers in [6,7].

In [4,5], we have established structure theorems characterizing the classes of non-planar K3,3-
free 2-connected projective-planar graphs (denoted by F ) and toroidal graphs (denoted by T ) in
terms of a special substitutional operation G ↑ N , where 2-pole networks of a given class N
are substituted for the edges of graphs from a class G. Moreover, we have used these structure
theorems to enumerate the labelled graphs in F and in T .

In the present paper we concentrate on the more difficult problem of their unlabelled enu-
meration. Our approach is based on Walsh’s method [16] for the unlabelled enumeration of
three-connected and homeomorphically irreducible two-connected graphs, together with species
theory techniques. The paper is organized as follows. The techniques and theorems are presented
in Sections 2 to 5. The proofs of the main results appear in Section 6. In Section 2, we recall
the definition of the composition operation G ↑ N and review the structure theorems of [4,5] for
2-connected non-planar K3,3-free projective-planar and toroidal graphs.

In Section 3, we introduce what we call the Walsh index series of classes of graphs and net-
works. These are similar to the cycle index series of graphs except that the edge cycles induced
by graph automorphisms are also taken into account. We first give their basic properties, in par-
ticular, the enumerative formulas related to classes of structures of the form G ↑ N , and then
proceed with their formal definitions.

In Section 4 we calculate the necessary Walsh index series for the projective-planar and
toroidal cores. These are the basic graphs into which planar networks are substituted to form the
graphs in F and T . There is an infinite family H of toroidal cores, called toroidal crowns, whose
Walsh series involves matching polynomials for paths and cycles (homogeneous Tchebytchev
polynomials) and an extension of the substitution formulas for G ↑ N -structures to the case
where G represents graph structures with two sorts of edges.

Some numerical results are given in Section 5. In particular the number of unlabelled toroidal
crowns and of toroidal cores according to the number of vertices and edges is given, up to 64
vertices. However, the enumeration of unlabelled non-planar 2-connected K3,3-free projective-
planar or toroidal graphs requires the computation of some enumerative series for planar net-
works which are still unknown in general. Results for small sizes can be obtained by generating
these networks by hand or by computer algorithms. Tables 2 and 3 cover unlabelled non-planar
2-connected K3,3-free projective-planar graphs on up to 9 vertices and non-projective-planar
toroidal graphs on up to 12 vertices.

Finally, in Section 6, we provide complete and detailed proofs of the basic enumerative formu-
las, in particular Theorems 3 and 4 below. This involves redefining the Walsh series WG and the
tilde generating series G̃, for the unlabelled enumeration of G, in terms of labelled enumeration
of associated structures consisting of pairs (G,σ ), where G is in G and σ is an automorphism
of G, with weights, in a typical species theory way. In other words, we transform the desired for-
mulas into equations between exponential generating functions of classes of labelled structures.
These formulas are then much easier to establish.

2. Decomposition and structure theorems

By convention, the graph K2 is considered as a 2-connected (non-separable) graph in this
paper. A 2-pole network (or simply a network) is a connected graph N with two distinguished
vertices 0 and 1, such that the graph N ∪ 01 is 2-connected, where the notation N ∪ ab is used
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Fig. 1. Example of a (P4 ↑ N )-structure (G,G0).

for the graph obtained from N by adding the edge ab if it is not already there. The vertices 0 and
1 are called the poles of N , and all the other vertices of N are said to be internal.

We define an operator τ acting on 2-pole networks, N �→ τ · N , which interchanges the poles
0 and 1. A class N of networks is called symmetric if N ∈ N ⇒ τ · N ∈N .

Definition. Let G be a class of graphs and N be a symmetric class of networks. We denote by
G ↑N the class of pairs of graphs (G,G0), such that

(1) the graph G0 is in G (G0 is called the core),
(2) the vertex set V (G0) is a subset of V (G),
(3) there exists a family {Ne: e ∈ E(G0)} of networks in N (called the components) such that the

graph G can be obtained from G0 by substituting Ne for each edge e ∈ E(G0), identifying
the poles of N with the extremities of e according to some orientation.

An example of a (G ↑N )-structure (G,G0), with G = P4, the class of path-graphs of order 4,
and N is the class of all networks, is given in Fig. 1.

We say that the composition G ↑ N is canonical if for any structure (G,G0) ∈ G ↑ N , the
core G0 ∈ G is uniquely determined by the graph G. In this case, we can identify G ↑N with the
class of resulting graphs G.

A network N is called strongly planar if the graph N ∪01 is planar. Denote by NP the class of
strongly planar networks. In [4] we prove the following structure theorem for projective-planar
graphs with no K3,3-subdivisions whose proof is based on structural results of [3].

Theorem 1. The class F of 2-connected, non-planar, K3,3-free and projective-planar graphs is
characterized by the relation

F = K5 ↑NP , (1)

the composition being canonical.

In order to describe a similar result of [5] for toroidal graphs, we need the following defini-
tions. Given two disjoint K5-graphs, the graph obtained by identifying an edge of one of the K5’s
with an edge of the other is called an M-graph (see Fig. 2(i)), and, when the edge of identifica-
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Fig. 2. (i) The graph M , (ii) the graph M∗.

Fig. 3. (i) A K5 \ e-network, (ii) a toroidal crown.

tion is deleted, an M∗-graph (see Fig. 2(ii)). A network obtained from K5 by selecting two poles
0 and 1 among the vertices and by removing the edge 01 is called a K5\e-network (see Fig. 3(i)).

Denote by Ci , i � 3, a cycle graph on i vertices. A toroidal crown H is a graph obtained from
a cycle Ci , i � 3, by substituting K5 \ e-networks for some edges of Ci in such a way that no two
unsubstituted edges of Ci are adjacent in H (see Fig. 3(ii)). Denote by H the class of toroidal
crowns.

A toroidal core is defined as either K5, an M-graph, an M∗-graph, or a toroidal crown. Denote
by TC the class of toroidal cores. In other words, TC = K5 + M + M∗ + H. The following
structure theorem is the basic result of [5], obtained by refining the structural and algorithmic
results of [3].

Theorem 2. The class T of 2-connected non-planar K3,3-free toroidal graphs is characterized
by the relation

T = TC ↑NP , (2)

the composition being canonical.

3. The Walsh index series of species of graphs and networks

A species is a class C of labelled combinatorial structures (for example, graphs) which is
closed under isomorphism. Each combinatorial structure has an underlying set (for example, the
vertex set of a graph), and any isomorphism is induced by a relabelling along a bijection between
the underlying sets. Examples of species arise from classes of graphs which are closed under
isomorphism and also from classes of networks, where the underlying set of a network consists
of its internal vertices.
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A species C is said to be weighted if each structure s of C is assigned a weight w(s) taken
from a commutative ring such that the weight function s �→ w(s) is invariant under isomorphism.
For example, given a graph G, we can define the weight w0(G) = ym, where m = |E(G)| is the
number of edges in G and y is a formal variable acting as an edge counter.

We write C = Cw to denote a weighted species C with weight function w. Given a weighted
species C = Cw , we use two generating functions corresponding to the weighted enumeration of
labelled and unlabelled C-structures: the exponential generating function

Cw(x) =
∑
n�0

∣∣C[n]∣∣
w

xn

n! , (3)

where C[n] denotes the set of all C-structures with underlying set [n] = {1,2, . . . , n} (labelled
structures) and where, for a weighted set S, the total weight |S|w is defined by

|S|w =
∑
s∈S

w(s),

and the ordinary generating function

C̃w(x) =
∑
n�0

∣∣C[n]/∼∣∣
w
xn, (4)

where C[n]/∼ denotes the set of isomorphism classes of structures in C[n] (unlabelled struc-
tures), often called the tilde generating function. For example, for a species G of graphs weighted
by the function w0(G) = ym, the generating functions (3) and (4) take the following form:

G(x, y) := Gw0(x) =
∑
n�0

gn(y)
xn

n! , (5)

with gn(y) = ∑
m�0 gn,mym, where gn,m is the number of graphs in G over the set [n] of vertices

and having m edges, and

G̃(x, y) := G̃w0(x) =
∑
n�0

g̃n(y)xn, (6)

with g̃n(y) = ∑
m�0 g̃n,mym, where g̃n,m is the number of isomorphism classes of graphs in G

having n vertices and m edges.
Similarly, for a species N of 2-pole networks weighted by the function w0(N) = ym, the

generating functions (3) and (4) take the form:

N (x, y) := Nw0(x) =
∑
n�0

νn(y)
xn

n! , (7)

with νn(y) = ∑
m�0 νn,mym, where νn,m is the number of networks in N over a set of n internal

vertices and having m edges, and
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Ñ (x, y) := Ñw0(x) =
∑
n�0

ν̃n(y)xn, (8)

with ν̃n(y) = ∑
m�0 ν̃n,mym, where ν̃n,m is the number of unlabelled networks from N having

n internal vertices and m edges. Note that unlabelled 2-pole networks are isomorphism classes
of networks, where any isomorphism ϕ :N →̃ N ′ is assumed to be pole preserving, i.e. ϕ(0) = 0
and ϕ(1) = 1. In particular, any automorphism of a network N should be pole-preserving.

We say that a species N of networks is symmetric if the opposite network τ · N of any net-
work N in N is also in N , where the opposite network τ · N of a network N is obtained by
interchanging the poles 0 and 1 of N . We also need to consider the subclass Nτ of N consisting
of τ -symmetric networks, that is, networks N such that τ · N is isomorphic to N .

Suppose we are given a species G of graphs and a symmetric species N of networks. In [4]
we have shown, following Walsh [15], how to compute the exponential generating function
(G ↑N )(x, y). In fact, we have

(G ↑ N )(x, y) = G
(
x,N (x, y)

)
. (9)

Note that isomorphisms of (G ↑ N )-structures (G,G0) are defined as core-preserving graph
isomorphisms. In the present paper we describe and extend the method of Walsh [16] for comput-
ing the tilde generating function (G ↑ N )˜(x, y) for unlabelled (G ↑ N )-structures. The method
involves special cycle index series

WG(a;b; c), W+
N (a;b; c) and W−

N (a;b; c)

in variables a = (a1, a2, . . .), b = (b1, b2, . . .) and c = (c1, c2, . . .), which we call the Walsh index
series. These series are defined below (see Definitions 1 and 2). We first state several properties
and theorems indicating their importance and application to the enumeration of graphs.

Proposition 1. Let G be a species of graphs. Then the following series identities hold:

G(x, y) = WG(x,0,0, . . . ;y,0,0, . . . ;0,0,0, . . .), (10)

G̃(x, y) = WG
(
x, x2, x3, . . . ;y, y2, y3, . . . ;y, y2, y3, . . .

)
. (11)

Proposition 2. Let N be a species of networks. Then the following series identities hold:

Ñ (x, y) = W+
N

(
x, x2, x3, . . . ;y, y2, y3, . . . ;y, y2, y3, . . .

)
, (12)

Ñτ (x, y) = W−
N

(
x, x2, x3, . . . ;y, y2, y3, . . . ;y, y2, y3, . . .

)
. (13)

Denote by

(
W+

N
)
k
= (

W+
N

)
k
(a;b; c) = W+

N (ak, a2k, . . . ;bk, b2k, . . . ; ck, c2k, . . .) (14)

and by

(
W−

N
)
k
= (

W−
N

)
k
(a;b; c) = W−

N (ak, a2k, . . . ;bk, b2k, . . . ; ck, c2k, . . .). (15)

Then we have the following basic theorem.
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Fig. 4. (i) Cylindrical edge cycle, (ii) Möbius edge cycle.

Theorem 3. Let G be a species of graphs and N be a symmetric species of networks. Then the
Walsh index series of the species G ↑N is given by

WG↑N (a;b; c) = WG
(
a1, a2, . . . ;

(
W+

N
)

1,
(
W+

N
)

2, . . . ;
(
W−

N
)

1,
(
W−

N
)

2, . . .
)
. (16)

As a corollary, we obtain the generating function (G ↑ N )˜(x, y). This is stated in the follow-
ing theorem.

Theorem 4. Given a species G of graphs and a symmetric species N of networks, the generating
function (G ↑N )˜(x, y) of unlabelled (G ↑N )-structures is given by

(G ↑ N )˜(x, y) = WG
(
x, x2, . . . ; Ñ (x, y), Ñ

(
x2, y2), . . . ; Ñτ (x, y), Ñτ

(
x2, y2), . . .). (17)

We now proceed to the formal definition of the Walsh index series WG(a;b; c) for a species
G of graphs. Let G = (V (G),E(G)) be a graph in G. A permutation σ of V (G) which is an
automorphism of the graph G, induces a permutation σ (2) of the set E(G) of edges whose cycles
are of two possible sorts: if c is a cycle of σ (2) of length l, then either σ l(a) = a and σ l(b) = b

for each edge e = ab of c, in which case c is called an orientation preserving (or cylindrical)
edge cycle, or else σ l(a) = b and σ l(b) = a for each edge e = ab of c, in which case c is
called an orientation reversing (or Möbius) edge cycle. For example, the automorphism σ =
(1,2,3,4)(5,6,7,8) of the graph of Fig. 4(i) induces the cylindrical edge cycle (15,26,37,48)

and the automorphism σ = (1,2,3,4,5,6,7,8) of the graph of Fig. 4(ii) induces the Möbius
edge cycle (15,26,37,48).

Let Aut(G) denote the set of automorphisms of G. For σ ∈ Aut(G), denote by σk the number
of cycles of length k of the permutation σ , by cylk(G,σ ) the number of cylindrical edge cycles
of length k of G induced by σ , and by möbk(G,σ ) the number of Möbius edge cycles of length
k of G induced by σ . Given a graph G ∈ G and an automorphism σ of G, we define the weight
w(G,σ) of such a structure as the following cycle index monomial:

w(G,σ) = a
σ1
1 a

σ2
2 · · ·bcyl1(G,σ )

1 b
cyl2(G,σ )

2 · · · cmöb1(G,σ )
1 c

möb2(G,σ )
2 · · · . (18)

Definition 1. The Walsh index series WG(a;b; c) of a species G of graphs is defined as
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WG(a;b; c) =
∑

G∈Typ(G)

1

|Aut(G)|
∑

σ∈Aut(G)

w(G,σ), (19)

where the notation G∈ Typ(G) means that the summation should be taken over a set of represen-
tatives G of the isomorphism classes of graphs in G.

We now define the Walsh index series W+
N and W−

N of a species N of 2-pole networks. Let
σ ∈ S[U ] be a permutation of the underlying set U of a 2-pole network N . We can extend σ to
two permutations on U ∪ {0,1}, σ+ = (0)(1)σ and σ− = (0,1)σ . If N is a 2-pole network of N
with internal vertices U , denote by N̂ the corresponding graph on U ∪ {0,1}. Then we denote by

Aut+(N) = {
σ ∈ S[U ] ∣∣ σ+ ∈ Aut(N̂)

}
(20)

and

Aut−(N) = {
σ ∈ S[U ] ∣∣ σ− ∈ Aut(N̂)

}
. (21)

Remark that Aut+(N) = Aut(N).
For N ∈N [U ] and σ ∈ Aut+(N), we assign the weight

w(N,σ) = w(N̂,σ+)

a2
1

, (22)

and for N ∈ N [U ] and σ ∈ Aut−(N), we set

w(N,σ) = w(N̂,σ−)

a2
. (23)

In other words, only the internal vertex cycles are accounted for.

Definition 2. For a species of networks N , we define the Walsh index series W+
N and W−

N by
the formulas

W+
N (a;b; c) =

∑
N∈Typ(N )

1

|Aut+(N)|
∑

σ∈Aut+(N)

w(N,σ), (24)

and

W−
N (a;b; c) =

∑
N∈Typ(Nτ )

1

|Aut−(N)|
∑

σ∈Aut−(N)

w(N,σ). (25)

Let B be a species of 2-connected graphs containing K2. Denote by B0,1 the species of 2-pole
networks that are obtained from the graphs of B by removing an edge and by relabelling the
extremities 0 and 1 in one or two possible ways. For example, for the class K5 of complete graph
with five vertices, we obtain the class (K5)0,1 of K5 \ e-networks. Also denote by NB the class
of networks obtained by taking all networks in B0,1 except the trivial network 1 consisting of
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two isolated vertices 0 and 1, and networks of the form N ∪ 01, where N ∈ B0,1. Note that for
the labelled enumeration, we have (see [4] and the proof of Proposition 3 in Section 6)

x2B0,1(x, y) = 2
∂

∂y
B(x, y) (26)

and

NB(x, y) = (1 + y)B0,1(x, y) − 1. (27)

Proposition 3. (See [16].) Let B be a species of 2-connected graphs containing K2. Then the
Walsh index series of the associated species of networks B0,1 and NB can be computed as fol-
lows:

W+
B0,1

(a;b; c) = 2

a2
1

∂

∂b1
WB(a;b; c), (28)

W−
B0,1

(a;b; c) = 2

a2

∂

∂c1
WB(a;b; c), (29)

W+
NB

(a;b; c) = (1 + b1)W
+
B0,1

(a;b; c) − 1 (30)

and

W−
NB

(a;b; c) = (1 + c1)W
−
B0,1

(a;b; c) − 1. (31)

4. Walsh index series for toroidal cores

Here we calculate the necessary Walsh index series for the toroidal and projective-planar cores
of Theorems 1 and 2. These index series will be used later to count the unlabelled toroidal and
projective-planar graphs with no K3,3’s by using Theorem 4.

First, let us consider the projective-planar and toroidal core graph K5. Its Walsh index series
is given in the following proposition.

Proposition 4. (See [16].)

WK5(a;b; c) = W(a1, a2, . . . ;b1, b2, . . . ; c1, c2, . . .)

= 1

|Aut(K5)|
∑

σ∈Aut(K5)

w(K5, σ ) = 1

5!
∑
σ∈S5

w(K5, σ )

= 1

5!
(
a5

1b10
1 + 10a3

1a2b
3
1b

3
2c1 + 15a1a

2
2b4

2c
2
1 + 20a2

1a3b1b
3
3

+ 20a2a3b3b6c1 + 30a1a4b
2
4c2 + 24a5b

2
5

)
. (32)

The corresponding K5 \ e-network has the following Walsh index series, using (28):
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Corollary 1.

W+
K5\e(a;b; c) = 2

a2
1

∂WK5(a;b; c)
∂b1

= 1

3!
(
a3

1b9
1 + 3a1a2b

2
1b

3
2c1 + 2a3b

3
3

)
(33)

and

W−
K5\e(a;b; c) = 2

a2

∂WK5(a;b; c)
∂c1

= 1

3!
(
a3

1b3
1b

3
2 + 3a1a2b

4
2c1 + 2a3b3b6

)
. (34)

Proposition 5. The toroidal core graph M has the following Walsh index series

WM(a;b; c) = 1

|Aut(M)|
∑

σ∈Aut(M)

w(M,σ)

= 1

144

[
a8

1b19
1 + a6

1a2b
6
1b

6
2c1 + 6

(
a6

1a2b
12
1 b3

2c1 + a4
1a2

2b3
1b

7
2c

2
1

)
+ 9

(
a4

1a2
2b5

1b
6
2c

2
1 + a2

1a3
2b8

2c
3
1

) + 6
(
a2

1a3
2b1b

9
2 + a4

2b9
2c1

)
+ 4

(
a5

1a3b
10
1 b3

3 + a3
1a2a3b

3
1b

3
2b3b6c1

)
+ 12

(
a3

1a2a3b
3
1b

3
2b

3
3c1 + a1a

2
2a3b

4
2b3b6c

2
1

) + 4
(
a2

1a2
3b1b

6
3 + a2a

2
3b2

3b
2
6c1

)
+ 18

(
a2

1a2a4b1b
2
2b

3
4c2 + a2

2a4b
2
2b

3
4c1c2

) + 12
(
a2

1a6b1b
3
6 + a2a6b

3
6c1

)]
, (35)

and the toroidal core graph M∗ has the Walsh index series

WM∗(a;b; c) = 1

|Aut(M∗)|
∑

σ∈Aut(M∗)
w(M∗, σ )

= 1

144

[
a8

1b18
1 + a6

1a2b
6
1b

6
2 + 6

(
a6

1a2b
11
1 b3

2c1 + a4
1a2

2b3
1b

7
2c1

)
+ 9

(
a4

1a2
2b4

1b
6
2c

2
1 + a2

1a3
2b8

2c
2
1

) + 6
(
a2

1a3
2b9

2 + a4
2b9

2

)
+ 4

(
a5

1a3b
9
1b

3
3 + a3

1a2a3b
3
1b

3
2b3b6

) + 12
(
a3

1a2a3b
2
1b

3
2b

3
3c1 + a1a

2
2a3b

4
2b3b6c1

)
+ 4

(
a2

1a2
3b6

3 + a2a
2
3b2

3b
2
6

) + 18
(
a2

1a2a4b
2
2b

3
4c2 + a2

2a4b
2
2b

3
4c2

)
+ 12

(
a2

1a6b
3
6 + a2a6b

3
6

)]
. (36)

To obtain the Walsh index series WH of the class H of toroidal crowns, we will use a variant
of Theorem 3 where the K5 \ e-networks are substituted into some edges of a cycle Cn (n � 3)
selected in such a way that no pair of unsubstituted edges are adjacent. In other words, the
unsubstituted edges should form a matching of Cn.

Recall that a matching μ of a finite graph G is a set of pair-wise disjoint edges of G. We
introduce the homogeneous matching polynomial of G as

MG(y, z) =
∑

y|μ|zm−|μ|,

μ∈M(G)
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where M(G) is the set of matchings of G and m = |E(G)|. In particular, we have the homo-
geneous (Tchebytchev) matching polynomials Un(y, z) = MPn(y, z) and Tn(y, z) = MCn(y, z),
where Pn denotes the path graph and Cn, the cycle graph over the set of vertices V = {1,2, . . . , n}
(see [5,8]). They satisfy the recurrence relations

Un(y, z) = yzUn−2(y, z) + zUn−1(y, z), (37)

Tn(y, z) = yz2Un−2(y, z) + zUn(y, z), (38)

for n � 3, with the initial values U1(y, z) = 1, U2(y, z) = y + z and T1(y, z) = z, T2(y, z) =
2yz + z2. A useful convention is to also set U0(y, z) = 1/z. Notice that (37) and (38) are then
also valid for n = 2. These polynomials can also be computed by using their generating functions:

Proposition 6. The ordinary generating function for the homogeneous matching polynomials
Un(y, z) and Tn(y, z) of paths and cycles, respectively, are given by

∑
n�0

Un(y, z)xn = 1

(1 − xz − x2yz)z
(39)

and

∑
n�1

Tn(y, z)xn = xz + 2x2yz

1 − xz − x2yz
. (40)

Given a graph G = (V ,E) with a matching μ, the edges are partitioned into two sorts, say
Y and Z, depending on their membership in μ (sort Y ) or not (sort Z). Let Gm denote the
species of matched graphs, that is of pairs (G,μ), where G is a graph in G and μ is a matching
of G. Isomorphisms of matched graphs are matching-preserving graph isomorphisms. Let N be
a species of 2-pole networks. We denote Gm ↑Z N the class of graphs obtained by substituting
networks of N into the edges of sort Z, i.e. the edges not belonging to the matching μ of the
graph G. Our goal is to compute the Walsh index series WGm↑ZN of a class of graphs of the form
Gm ↑Z N .

In order to do this, we introduce an extension Wm
G of the Walsh index series to the matched

graphs as follows. Notice that an automorphism σ of a matched graph (G,μ) is an automorphism
σ of G which leaves the matching fixed, i.e. σ(μ) = μ. It will induce cylindrical and Möbius
edge cycles of sort Y , counted by the variables b1, b2, . . . and c1, c2, . . ., respectively, and cylin-
drical and Möbius edge cycles of sort Z, counted by the variables β1, β2, . . . and γ1, γ2, . . . ,
respectively.

Let wμ(σ) denote the following cycle index monomial:

wμ(σ) =
∏

a
σk

k

∏
b

cylk,Y (σ )

k

∏
c

möbk,Y (σ )

k

∏
β

cylk,Z(σ )

k

∏
γ

möbk,Z(σ )

k ,
k k k k k
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where cylk,Y (σ ),möbk,Y (σ ), cylk,Z(σ ) and möbk,Z(σ ) denote the number of cylindrical and
Möbius edge cycles of length k and of sort Y or Z, respectively. Then we set

Wm
G (a,b, c, β, γ ) =

∑
G∈Typ(G)

1

|Aut(G)|
∑

σ∈Aut(G)

∑
μ∈Fixm(σ )

wμ(σ ),

where Fixm(σ ) denotes the set of matchings μ of G which are fixed by σ .
The following result can be seen as a corollary of Theorem 3. Recall the plethystic notation

(14) and (15) for (W+
N )k and (W−

N )k , respectively.

Proposition 7. The Walsh index series WGm↑ZN (a;b; c) can be obtained from the extended
Walsh series Wm

G (a;b; c;β;γ ) by performing the substitutions βk := (W+
N )k(a;b; c), γk :=

(W−
N )k(a;b; c). In other words,

WGm↑ZN (a;b; c) = Wm
G

(
a;b; c; (W+

N
)

1,
(
W+

N
)

2, . . . ;
(
W−

N
)

1,
(
W−

N
)

2, . . .
)
.

Our main application of Proposition 7 is in the case where G = C = ∑
n�3 Cn and N = K5 \e.

Indeed, by definition, for the species H of toroidal crowns, we have

H = Cm ↑Z K5 \ e,

so that

WH
(
a;b; c

) = Wm
C

(
a;b; c; (W+

K5\e
)

1,
(
W+

K5\e
)

2, . . . ;
(
W−

K5\e
)

1,
(
W−

K5\e
)

2, . . .
)
. (41)

Thus we need to compute the extended Walsh series Wm
Cn

(a;b; c;β;γ ) for matched cycles of
size n, n � 3. But first, as an example, we give the extended Walsh series Wm

Pn
for matched paths

of size n � 1.

Proposition 8. The extended Walsh series Wm
Pn

(a;b; c;β;γ ) of matched paths of size n � 1 is
given by

Wm
Pn

(a;b; c;β;γ ) = 1

2
an

1Un(b1, β1)

+ 1

2

⎧⎪⎨
⎪⎩

a1a
n−1

2
2 β2Un−1

2
(b2, β2), n odd,

a
n
2
2 (γ1Un

2
(b2, β2) + c1β2Un−2

2
(b2, β2)), n even.

(42)

Proof. Assume that the vertex set of Pn is [n] = {1,2, . . . , n} and that the edges are of the form
{i, i + 1} for i = 1,2, . . . , n − 1. Then Aut(Pn) = {id, τ }, where id is the identity mapping of [n]
and τ is the reflection (1, n)(2, n − 1) . . . . For the identity mapping, any matching μ is left fixed
and the edges of sort Y (i.e. in μ) become cylindrical cycles of length 1, counted by b1, and
the edges of sort Z give rise to cycles counted by β1. This gives the first term 1

2an
1Un(b1, β1).

The second term corresponds to τ -symmetric matchings. These are entirely determined by their
restriction on the first half {1,2, . . . , �n

2 �}, and special attention has to be given to the parity of n.
Details are left to the reader. �
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We now move on to the matched cycles Cm
n , n � 3. First, we give the Walsh index series for

cycles Cn, n � 3, which is a refinement of the usual cycle index polynomial of Cn.

Proposition 9. (See [16].) The Walsh index series of n-cycles Cn is given by

WCn(a;b; c) = 1

2n

∑
d|n

φ(d)a
n
d

d b
n
d

d + 1

2

⎧⎨
⎩a1a

n−1
2

2 b
n−1

2
2 c1, n odd,

1
2 (a

n
2
2 b

n−2
2

2 c2
1 + a2

1a
n−2

2
2 b

n−2
2

2 ), n even
(43)

where φ is the Euler φ-function.

By combining the counting approaches of (42) and (43), we can compute the extended Walsh
series for Cm

n , n � 3, as follows. Notice that we use the homogeneous matching polynomials
Un(y, z) and Tn(y, z) given in Proposition 6. The proof is left to the reader.

Theorem 5. The extended Walsh series Wm
Cn

is given, for n � 3, by the formulas

Wm
Cn

(a;b; c;β;γ ) = 1

2n

∑
d|n

φ

(
n

d

)
ad

n
d
Td(b n

d
, β n

d
)

+ 1

2
a1a

n−1
2

2

(
β2γ1Un−1

2
(b2, β2) + β2

2c1Un−3
2

(b2, β2)
)
, (44)

for n odd, and

Wm
Cn

(a;b; c;β;γ ) = 1

2n

∑
d|n

φ

(
n

d

)
ad

n
d
Td(b n

d
, β n

d
) + 1

4

[
a2

1a
n−2

2
2 β2

2Un−2
2

(b2, β2)

+ a
n
2
2

(
γ 2

1 Un
2
(b2, β2) + 2c1γ1β2Un−2

2
(b2, β2) + c2

1β
2
2Un−4

2
(b2, β2)

)]
, (45)

for n even.

It is then possible to obtain the generating function C̃m
n (x, y, z) of unlabelled matched cycles,

for n � 3, where the variables y and z are edge-counters of sort Y (in the matching) and Z (not
in the matching), respectively: set ai := xi , bi := yi , ci := yi , βi := zi , γi := zi in (44)–(45) for
all possible values of the index i. Then we have the following corollary.

Corollary 2. The tilde generating function C̃m
n (x, y, z) of unlabelled matched cycles, for n � 3,

is given by the following formulas:

C̃m
n (x, y, z) = 1

2n

∑
d|n

φ

(
n

d

)
xnTd

(
y

n
d , z

n
d
)

+ 1

2
xn

(
z3Un−1

2

(
y2, z2) + z4yUn−3

2

(
y2, z2)), (46)

for n odd and
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C̃m
n (x, y, z) = 1

2n

∑
d|n

φ

(
n

d

)
xnTd

(
y

n
d , z

n
d
) + 1

4

[
xn

(
z4Un−2

2

(
y2, z2)

+ z2Un
2

(
y2, z2) + 2yz3Un−2

2

(
y2, z2) + y2z4Un−4

2

(
y2, z2))], (47)

for n even.

Finally, we can compute the Walsh index series WH(a;b; c) of the species H of toroidal
crowns by using (41), with Wm

C = ∑
n�3 Wm

Cn
and W+

K5\e and W−
K5\e given by (33) and (34).

5. Numerical results

We used Maple IX software to do all the computations. First we give the first terms of the
tilde generating function H̃(x, y) of unlabelled toroidal crowns, by setting ak := xk , bk := yk ,
ck := yk into (41):

H̃(x, y) = y19x9 + y20x10 + y27x12 + y28x13 + y29x14 + y30x15 + y36x16 + y37x17 + 2y38x18

+ y39x19 + (
y40 + y45)x20 + y46x21 + 2y47x22 + 2y48x23 + (

y49 + y54)x24

+ (
y50 + y55)x25 + 3y56x26 + 3y57x27 + (

3y58 + y63)x28 + (
y59 + y64)x29

+ (
y60 + 3y65)x30 + 4y66x31 + (

4y67 + y72)x32 + (
3y68 + y73)x33

+ (
y69 + 4y74)x34 + (

y70 + 5y75)x35 + (
8y76 + y81)x36 + (

5y77 + y82)x37

+ (
4y78 + 4y83)x38 + (

y79 + 7y84)x39 + (
y80 + 10y85 + y90)x40

+ (
10y86 + y91)x41 + (

7y87 + 5y92)x42 + (
4y88 + 8y93)x43

+ (
y89 + 16y94 + y99)x44 + (

y90 + 16y95 + y100)x45 + (
16y96 + 5y101)x46

+ (
8y97 + 10y102)x47 + (

5y98 + 20y103 + y108)x48 + (
y99 + 26y104 + y109)x49

+ (
y100 + 26y105 + 6y110)x50 + (

20y106 + 12y111)x51

+ (
10y107 + 29y112 + y117)x52 + (

5y108 + 38y113 + y118)x53

+ (
y109 + 50y114 + 6y119)x54 + (

y110 + 38y115 + 14y120)x55

+ (
29y116 + 35y121 + y126)x56 + (

12y117 + 57y122 + y127)x57

+ (
6y118 + 76y123 + 7y128)x58 + (

y119 + 76y124 + 16y129)x59

+ (
y120 + 57y125 + 47y130 + y135)x60 + (

35y126 + 79y131 + y136)x61

+ (
14y127 + 126y132 + 7y137)x62 + (

6y128 + 133y133 + 19y138)x63

+ (
y129 + 126y134 + 56y139 + y144)x64 + · · · .

Recall that TC = K5 + M + M∗ +H. It suffices to add to the above series the terms

x5y10 + (
y19 + y18)x8,
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Table 1
The number tC(n) of unlabelled toroidal cores (having n vertices)

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
tC(n) 1 0 0 2 1 1 0 1 1 1 1 1 1 2 1 2 1 2 2 2

n 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
tC(n) 2 3 3 4 2 4 4 5 4 5 6 9 6 8 8 12 11 12 12 18

n 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
tC(n) 18 21 18 26 28 33 32 40 44 57 53 65 70 89 93 106 115 147 158 184

Table 2
The number of unlabelled 2-connected K3,3-free non-planar projective-
planar graphs with n vertices and m edges
n m fn,m n m fn,m n m fn,m

5 10 1 8 13 7 9 14 17
6 11 1 8 14 21 9 15 76
6 12 1 8 15 34 9 16 197
7 12 3 8 16 28 9 17 272
7 13 5 8 17 10 9 18 234
7 14 5 8 18 2 9 19 120
7 15 1 9 20 40

9 21 6

corresponding to K5, M and M∗, to cover all toroidal cores with up to 64 vertices. By setting
y = 1, we obtain the numbers tC(n) of unlabelled toroidal cores with n vertices, presented in
Table 1.

To count unlabelled toroidal graphs with no K3,3’s, it is necessary to know the generating
functions for unlabelled strongly planar networks NP and τ -symmetric networks NP,τ . It is still
an open problem to give these power series in general. We have enumerated planar networks with
up to six (four internal) vertices by hand. The corresponding generating functions are:

ÑP (x, y) = y + (1 + y)
[
y2x + (

y3 + 3y4 + y5)x2 + (
y4 + 8y5 + 15y6 + 9y7 + 3y8)x3

+ (
y5 + 16y6 + 66y7 + 112y8 + 97y9 + 47y10 + 9y11)x4 + · · ·], (48)

and

ÑP,τ (x, y) = y + (1 + y)
[
y2x + (

y3 + y4 + y5)x2 + (
y4 + 2y5 + 3y6 + 3y7 + y8)x3

+ (
y5 + 4y6 + 8y7 + 12y8 + 13y9 + 7y10 + 3y11)x4 + · · ·]. (49)

Tables 2 and 3 present the corresponding results for the classes F and T − F of non-planar
2-connected K3,3-free projective-planar and non-projective-planar toroidal graphs. Table 2 gives
the number of graphs in F , and Table 3 gives the number of graphs in (T − F). Recall that
F = K5 ↑NP and T = TC ↑NP . Therefore (T −F) = (TC − K5) ↑ NP .

Timothy Walsh has extended the series (48) and (49) to eight internal vertices with the help of
Brendon McKay, author of the software “plantri” (available on the web, see [2]) who supplied a
list of all the 3-connected planar (embedded) graphs and their automorphisms and by using tech-
niques of [16]. Consequently, Tables 2 and 3 have been extended to n = 13 and 16, respectively,
and are available from the authors. Further extensions are possible.
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Table 3
The number of unlabelled 2-connected K3,3-free non-projective-planar
toroidal graphs with n vertices and m edges
n m fn,m n m fn,m n m fn,m

8 18 1 11 21 67 12 22 277
8 19 1 11 22 245 12 23 1361
9 19 3 11 23 419 12 24 3274
9 20 5 11 24 396 12 25 4598
9 21 3 11 25 204 12 26 4061

10 20 17 11 26 50 12 27 2295
10 21 39 11 27 7 12 28 823
10 22 44 12 29 195
10 23 24 12 30 21
10 24 3

Since vertices of degree two are uninteresting for graph embeddability questions, we plan to
count the corresponding homeomorphically irreducible graphs in a future work.

6. Proofs

Our principal goal in this section is to prove Theorems 3 and 4. We also provide proofs of
the other results and formulas of Section 3. The proof given by Walsh of his Proposition 2.2
(see [16]), which implies Theorem 3, is rather sketchy. It is based on a result on the cycle index
polynomial of wreath products used by Robinson to prove his composition theorem for graphs
(see [11]). Walsh gives two examples to show how the approach of Robinson can be adapted to
prove his proposition.

Here we provide complete and detailed proofs based on the methods of species theory (see
for example, [1, Section 4.3]). To achieve this, we reformulate the Walsh index series WG and
the (tilde) generating function G∼(x, y) in terms of labelled enumeration of associated weighted
species. Following an idea of Joyal [9], we introduce the auxiliary weighted species Gaut = Gaut

w .
For any finite set U (of vertices), Gaut[U ] is defined as the set of graphs in G[U ] equipped with
an automorphism σ , i.e.

Gaut[U ] = {
(G,σ )

∣∣ G ∈ G[U ], σ ∈ S[U ]: σ · G = G
}
,

where S[U ] is the set of all permutations of U . The relabelling rule of Gaut-structures along a
bijection β :U ˜−→ U ′ is defined as follows:

β · (G,σ ) = (
β · G,β ◦ σ ◦ β−1),

where β · G is the graph obtained from G by relabelling along β and the composition ◦ is taken
from right to left. It is easy to verify that Gaut

w is a well-defined weighted species, where the
weight function w(G,σ) is the cycle index monomial defined by (18). Recall that |Gaut[n]|w
denotes the total weight of Gaut

w -structures over the vertex set [n] := {1,2, . . . , n}, i.e.

∣∣Gaut[n]∣∣
w

=
∑

(G,σ )∈Gaut[n]
w(G,σ).
w
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We will also use the weight function w0 defined as w0(G,σ ) = ym, where m is the number of
edges in G. As the following two propositions show, the Walsh index series WG(a;b; c) and the
generating function G̃(x, y) appear as special cases of the usual exponential generating function
of weighted species

Gaut
w (x) =

∑
n�0

∣∣Gaut[n]∣∣
w

xn

n! ,

with the weight functions w as above, and w = w0, respectively.

Proposition 10. Using the exponential generating function of labelled Gaut
w -structures, we have

Gaut
w (x)|x=1 = WG(a;b; c). (50)

Proof. The number of distinct graphs on [n] obtained by relabelling a given graph G with n

vertices is given by n!
|Aut(G)| . Therefore formula (19) gives:

WG(a;b; c) =
∑
n�0

∑
G∈Typ(Gn)

1

|Aut(G)|
∑

σ∈Aut(G)

w(G,σ)

=
∑
n�0

1

n!
∑

G∈Typ(Gn)

n!
|Aut(G)|

∑
σ∈Aut(G)

w(G,σ)

=
∑
n�0

1

n!
∑

G∈G[n]

∑
σ∈Aut(G)

w(G,σ)

=
∑
n�0

1

n!
∑

(G,σ )∈Gaut[n]
w(G,σ)

=
∑
n�0

1

n!
∣∣Gaut[n]∣∣

w
= Gaut

w (x)|x=1. �

Proposition 11. Using the exponential generating function of labelled Gaut
w0

-structures, we have

Gaut
w0

(x) = G̃(x, y). (51)

Proof. It is easy to see, using Burnside’s Lemma (alias Cauchy–Frobenius formula, for example,
see [1]), that

Gaut
w0

(x) =
∑
n�0

∑
(G,σ )∈Gaut[n]

w0(G,σ )
xn

n!

=
∑ 1

n!
∑ ∑

xnym
n�0 σ∈Sn G∈FixG[σ ]
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=
∑
n�0

∑
G∈TypG[n]

xnym

= G̃(x, y).

Here the notation FixG[σ ] = {G ∈ G[n] | σ · G = G} has been used. �
Proof of Proposition 1. The left-hand side of (10) is the mixed exponential generating function
that counts labelled graphs in G. After the substitution in the right-hand side of (10), following
the proof of Proposition 10, the only surviving permutation is σ = id[n], and the weight function
becomes w(G,σ) = xnym, where n is the number of vertices and m is the number of edges in G.
Then we have

WG(x,0,0, . . . ;y,0,0, . . . ;0,0,0, . . .) =
∑
n�0

1

n!
∑

G∈G[n]

∑
σ∈Aut(G)

w(G,σ)

=
∑
n�0

1

n!
∑

G∈G[n]
xnym

= G(x, y).

To prove (11), note that

w̄(G,σ ) := w(G,σ)|ai=xi , bi=yi , ci=yi = xnym

and, using Propositions 10 and 11, we have

WG
(
x, x2, x3, . . . ;y, y2, y3, . . . ;y, y2, y3, . . .

) = Gaut
w (x)|x=1,w=w̄ = Gaut

w0
(x) = G̃(x, y). �

A similar approach can be used for the Walsh index series W+
N and W−

N of a given species of
2-pole networks N . Denote by

N+[U ] = {
(N,σ )

∣∣ N ∈ N [U ], σ ∈ Aut+(N)
}

and

N−[U ] = {
(N,σ )

∣∣ N ∈N [U ], σ ∈ Aut−(N)
}
,

where Aut+(N) and Aut−(N) are defined by (20) and (21), respectively. Then, using the weight
functions given by (22) and (23), N+

w and N−
w are weighted species whose labelled enumerations

yield by specialization the series W+
N , W−

N , Ñ (x, y) and Ñτ (x, y).

Proposition 12. For a species of networks N , the Walsh index series W+
N and W−

N can be
expressed by the formulas

N+
w (x)|x=1 = W+

N (a;b; c) (52)

and
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N−
w (x)|x=1 = W−

N (a;b; c), (53)

respectively.

Proof. Notice that for (52) we have Aut+(N) = Aut(N), and, when N ∈ Nτ , then for (53) we
have |Aut−(N)| = |Aut+(N)|, since given any ϕ ∈ Aut−(N), the application σ �→ σ ◦ ϕ defines
a bijection from Aut+(N) to Aut−(N). Then, by using Definition 2, the proof is similar to the
proof of Proposition 10. �

Defining the weight function w0 as w0(N,σ ) = ym for a network N having m edges, we
obtain the following identities.

Proposition 13. Using the usual (exponential) generating function of labelled N+
w0

-structures
and N−

w0
-structures, we have

N+
w0

(x) = Ñ (x, y) (54)

and

N−
w0

(x) = Ñτ (x, y), (55)

respectively.

Proof. Using the remarks of the proof of Proposition 12, the proof here is analogous to that of
Proposition 11. �
Proof of Proposition 2. Notice that

w(N,σ)|ai=xi , bi=yi , ci=yi = xnym,

i.e.

w(N̂,σ+)

a2
1

∣∣∣
ai=xi , bi=yi , ci=yi

= xnym

and

w(N̂,σ−)

a2

∣∣∣
ai=xi , bi=yi , ci=yi

= xnym,

where n is the number of internal vertices and m is the number of edges of N . Then the proof is
similar to that of Proposition 1, by using Definition 2. �
Proof of Proposition 3. In order to prove (28), it is sufficient to establish the combinatorial
equality of weighted species

2
∂ Baut

w = a2
1X2 ·B+

01,w. (56)

∂b1
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Now, to obtain a 2 ∂
∂b1

Baut
w -structure on a set U , we start with a Baut

w -structure (B,σ ) on U ;

the operator 2 ∂
∂b1

is then interpreted as selecting, orienting and putting aside a cylindrical edge
cycle of σ of length 1, �e = (u, v), where {u,v} ⊆ U ; it is natural to relabel the vertices u and
v by 0 and 1, respectively, in the graph B . This is equivalent to first selecting and ordering the
two vertices u and v from U and defining σ to be the identity on {u,v}, which yields an a2

1X2-
structure, and then selecting a B+

01,w-structure (B0, σ0) on the complementary set U0 = U \{u,v},
giving the second factor on the right-hand side of (56). The reverse construction consists simply
of setting U = U0 ∪ {u,v}, B = B0, identifying u with 0 and v with 1, and σ = σ0 ∪ id{u,v}.
Taking generating functions and setting x = 1 yields

2
∂

∂b1
WB(a;b; c) = a2

1W+
B0,1

(a;b; c)

which is equivalent to (28). Also, multiplication of B+
01,w by b1 corresponds to reinserting the

edge e in B so that we have an isomorphism

N+
B,w

= (1 + b1)B+
01,w − 1 (57)

which yields (30).
Notice that the same species isomorphisms, with the weight w0, would give (26) and (27).

The proof of (29) and (31) is based on the species isomorphism

2
∂

∂c1
Baut

w = a2X
2 ·B−

01,w (58)

which is established in a similar manner. �
For a species of graphs G, we introduce the following notation which will be used in the proofs

of Theorems 3 and 4. Given a permutation σ ∈ Sn, we denote by n = (n1, n2, n3, . . .) the cycle
type of σ . Notice that n1 + 2n2 + 3n3 +· · · = n < ∞, which we write simply as n < ∞, and that
the number of permutations of a given cycle type n is equal to n!

1n1n1!2n2 n2!··· . If G ∈ FixG[σ ],
denote by ki = ki(G,σ ) and mi = mi(G,σ) the number of cylindrical and Möbius edge cycles,
respectively, of length i induced by σ . Notice that the ki ’s and mi ’s are completely determined
by the cycle type of the automorphism σ (for example, see [1,12,13,16]). Therefore we can write
ki = ki(G,n) and mi = mi(G,n). We also set

FixG[n] = FixG[σ ],
where σ is some fixed permutation of type n. Then we have the following alternate expression
for WG(a;b; c):

WG(a;b; c) =
∑
n�0

1

n!
∑

(G,σ )∈Gaut[n]
w(G,σ)

=
∑
n�0

1

n!
∑
σ∈Sn

∑
G∈FixG[σ ]

a
n1
1 a

n2
2 · · ·bk1

1 b
k2
2 · · · cm1

1 c
m2
2 · · ·

=
∑
n<∞

1

1n1n1!2n2n2! · · ·
∑

G∈FixG[n]
a

n1
1 a

n2
2 · · ·bk1

1 b
k2
2 · · · cm1

1 c
m2
2 · · · . (59)
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Example. As an illustration, let us consider the class Kn of complete graphs, n � 1. Its Walsh
index series is given by (see [12,13,16], and also [1]).

WKn(a;b; c) =
∑
n

∏
i

a
ni

i

ini ni !
∏
i<j

b
(i,j)ninj

[i,j ]
∏
i

b
i(

ni
2 )+� (i−1)

2 �ni

i

∏
i

c
n2i

i , (60)

where the sum is taken over all sequences n = (n1, n2, n3, . . .) such that n1 +2n2 +3n3 +· · · = n

and where [i, j ] denotes the least common multiple and (i, j), the greatest common divisor of i

and j . Notice that the substitution ai := ai , bi := 1 + bi , ci := 1 + ci into (60) gives the Walsh
index series WGn

for the species of all graphs on n vertices. In other words, we have

WGa(a;b; c) = WK(a;1 + b;1 + c), (61)

where Ga denotes the species of all graphs and K , the species of complete graphs. As observed
in [16], this can be seen as an application of Theorem 3 since in fact we have

Ga = K ↑NK2 , (62)

where NK2 , denotes the class of trivial networks consisting of either two isolated poles or two
poles joined by an edge.

Given networks N1 ∈ N [U ] and N2 ∈ N [V ], a bijection between the underlying sets (of
internal vertices) ϕ :U → V is a network isomorphism if

ϕ+ = ϕ ∪ id{0,1} : N̂1 → N̂2

is a graph isomorphism, where N̂ denotes the graph on U ∪ {0,1} associated to the network
N ∈N [U ]. Similarly, a bijection ϕ :U → V is a network anti-isomorphism if

ϕ− = ϕ ∪ τ : N̂1 → N̂2

is a graph isomorphism, where τ denotes the tranposition (0,1).
A cylindrical m-wreath of networks is defined as an oriented cycle cm of length m of network

isomorphisms

cm :N1
ϕ1−→ N2

ϕ2−→ · · · ϕm−2−−−→ Nm−1
ϕm−1−−−→ Nm

ϕm−−→ N1, (63)

where the networks Ni are assumed to have disjoint sets of vertices.
Let Km(N ) denote the species of cylindrical m-wreaths of networks. We associate the weights

w(cm) and w0(cm) as follows. Define the graph ĉm to be the disjoint union of all the graphs N̂i

associated to the networks Ni appearing in cm. Also define σ+ to be the graph automorphism
of ĉm given by

σ+ =
m⋃

i=1

ϕ+
i .

Then we set w(cm) := w(ĉm,σ+)/a2
m, where the weight w(ĉm,σ+) is given by (18), and

w0(cm) := y|E(ĉm)|.
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A rooted cylindrical m-wreath of networks is a cylindrical m-wreath of networks cm where
one network is distinguished from the others. In fact the description (63) of cm includes a rooting
at N1. In the unrooted case, all the possible rootings are considered equivalent. Let K•

m(N )w
and K•

m(N )w0 denote the corresponding weighted species of rooted cylindrical m-wreaths of
networks. We introduce the weights (w)m and wm

0 on N+-structures (N,σ ) by

(w)m(N,σ) = w(N,σ)|ai :=ami ,ai :=ami ,ai :=ami
and wm

0 (N,σ ) = w0(N,σ )m. (64)

We then have, using the plethystic notation (14),

N+
(w)m

(x)|x=1 = (
W+

N
)
m

and N+
wm

0
(x) = Ñ

(
x, ym

)
. (65)

Proposition 14. We have the weighted species isomorphisms

K•
m(N )w = N+

(w)m

(
Xm

)
, K•

m(N )w0 = N+
wm

0

(
Xm

)
(66)

and the series equalities

K•
m(N )w(x) = N+

(w)m

(
xm

)
, K•

m(N )w0(x) = Ñ
(
xm,ym

)
. (67)

Proof. Given a rooted cylindrical m-wreath of networks cm in K•
m(N ), of the form (63), note

that the composite ϕ0 = ϕm ◦ ϕm−1 ◦ · · · ◦ ϕ2 ◦ ϕ1 is an automorphism of N1, and we obtain
a N+-structure (N1, ϕ0). Moreover the sequence of network isomorphisms (ϕ1, . . . , ϕm−1) can
be encoded in a set of lists of length m (u1, u2, . . . , um), where u1 runs over the underlying
set of N1 and ui+1 = ϕi(ui), i = 1, . . . ,m − 1, and we can consider the N+-structure (N1, ϕ0)

to “live” on this set of lists. In other words, what we have obtained is an N+(Xm)-structure.
Since the isomorphism ϕm can be recovered from ϕ0 and the other isomorphisms by the rule
ϕm = ϕ0 ◦ ϕ−1

1 ◦ ϕ−1
2 ◦ · · · ◦ ϕ−1

m−1, this correspondence is bijective. Finally we can see that the
vertex and edge cycle structure of (N1, ϕ0) is the same as that of (ĉm, σ+), except for the fact
that all cycle lengths are multiplied by m in (ĉm, σ+), and that the number of edges of N1 is
multiplied by m in ĉm. This proves the two combinatorial identities of (66). The formulas of (67)
then follow by taking generating functions. �

We now define a rooted Möbius m-wreath of networks ca
m to be a sequence of network isomor-

phisms N1
ϕ1−→ N2

ϕ2−→ · · · ϕm−2−−−→ Nm−1
ϕm−1−−−→ Nm of length m − 1 followed by a network anti-

isomorphism ϕm :Nm −→ N1. Notice that ϕ0 = ϕm ◦ϕm−1 ◦· · ·◦ϕ2 ◦ϕ1 is an anti-automorphism
of N1, and that ϕm = ϕ0 ◦ ϕ−1

1 ◦ ϕ−1
2 ◦ · · · ◦ ϕ−1

m−1. Define the graph ĉa
m to be the disjoint union of

all the graphs N̂i associated to the networks Ni . Also define σ− to be the graph automorphism
of ĉa

m given by

σ− =
m−1⋃
i=1

ϕ+
i ∪ ϕ−

m.

Then we set w(ca
m) := w(ĉa

m,σ−)/a2
m and w0(c

a
m) := y|E(ĉa

m)|. Let K•μ
m (N )w and K•μ

m (N )w0

denote the corresponding species of weighted rooted Möbius m-wreaths of networks of N .
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Proposition 15. We have the weighted species isomorphisms

K•μ
m (N )w = N−

(w)m

(
Xm

)
, K•μ

m (N )w0 = N−
wm

0

(
Xm

)
(68)

and the series equalities

K•μ
m (N )w(x) = N−

(w)m

(
xm

)
, K•μ

m (N )w0(x) = Ñτ

(
xm,ym

)
. (69)

Proof. The proof is similar to that of Proposition 14. Details are left to the reader. �
Also observe that, similarly to (65), we have

N−
(w)m

(x)|x=1 = (
W−

N
)
m

and N−
wm

0
(x) = Ñτ

(
x, ym

)
. (70)

We are now ready to prove Theorems 3 and 4. It is interesting to note that both results can be
proved by the labelled enumeration of weighted (G ↑ N )aut-structures, with the weights w for
Theorem 3 and w0 for Theorem 4.

Proof of Theorem 3. Consider a G ↑N -structure (G,G0), with a core G0 in G and components
in N , together with an automorphism σ . By definition, σ should preserve the core G0 and in fact
it induces an automorphism σ0 of G0.

We choose to classify these structures according to the cycle type n = (n1, n2, . . .) of the core
automorphism σ0. Also, for enumeration purposes it is preferable to consider the (G ↑ N )aut-
structures with a selected rooting ρ of each cycle of σ0. Let (G ↑ N )aut

n and (G ↑ N )
aut,•
n denote

the corresponding species. It is clear that

(G ↑N )aut,•
n (x) = 1n1 2n2 · · · (G ↑N )aut

n (x).

A crucial fact here is that with such a cycle rooting of σ0, each edge cycle of (G0, σ0) inherits
a canonical rooting, i.e. a selection of one of its edges. Each of these selected edges can also be
canonically oriented, for example according to alphabetical order. Then the automorphism σ of
G will induce a rooted cylindrical m-wreath of networks in N for each rooted cylindrical edge
cycle of length m of σ0 and a rooted Möbius m-wreath of networks in N for each rooted Möbius
edge cycle of length m. Conversely, the data given by (G0, σ0, ρ) and the associated family of
rooted wreaths completely characterizes the (G ↑N )

aut,•
n -structure (G,σ,ρ). Hence we have

(G ↑ N )aut
w (x) =

∑
n<∞

(G ↑N )aut
n,w (x)

=
∑
n<∞

1

1n12n2 · · · (G ↑N )aut,•
n,w (x)

=
∑
n<∞

1

1n12n2 · · ·
(xa1)

n1

n1!
(x2a2)

n2

n2! · · ·
∑

G0∈FixG[n]

(
K•

1(N )k1
w K•

2(N )k2
w · · ·)

× (
K•μ

(N )m1
w K•μ

(N )m2
w · · ·)(x)
1 2
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=
∑
n<∞

(xa1)
n1(x2a2)

n2 · · ·
1n1n1!2n2n2! · · ·

×
∑

G0∈FixG[n]
N+

(w)1
(x)k1N+

(w)2

(
x2)k2 · · ·N−

(w)1
(x)m1N−

(w)2

(
x2)m2 · · · ,

where ki = ki(G0, n) and mi = mi(G0, n), and, using the representation (59) of WG and the first
equations of (65), (67), (69) and (70), we obtain

WG↑N (a;b; c) = (G ↑N )aut
w (x)|x=1

=
∑
n<∞

a
n1
1 a

n2
2

1n1n1!2n2n2! · · ·

×
( ∑

G0∈FixG[n]
N+

(w)1
(x)k1N+

(w)2

(
x2)k2 · · ·N−

(w)1
(x)m1N−

(w)2

(
x2)m2 · · ·

)∣∣
x=1

=
∑
n<∞

a
n1
1 a

n2
2

1n1n1!2n2n2! · · ·
∑

G0∈FixG[n]

(
W+

N
)m1

1

(
W+

N
)m2

2 · · · (W−
N

)m1
1

(
W−

N
)m2

2 · · ·

= WG
(
a1, a2, . . . ;

(
W+

N
)

1,
(
W+

N
)

2 . . . ; (W−
N

)
1,

(
W−

N
)

2, . . .
)
. �

Proof of Theorem 4. Although Theorem 4 can be immediately deduced from Theorem 3 by the
specialization (11), a direct proof can also be given, following that of Theorem 3, with the weight
w0 instead of w. Details are left to the reader. �
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