392 research outputs found

    Thirty years of shape theory

    Get PDF
    The paper outlines the development of shape theory since its founding by K. Borsuk 30 years ago to the present days. As a motivation for introducing shape theory, some shortcomings of homotopy theory in dealing with spaces of irregular local behavior are described. Special attention is given to the contributions to shape theory made by the Zagreb topology group

    Shape Theory

    Full text link
    Shape theory was founded by K.~Borsuk 50 years ago. In essence, this is spectral homotopy theory; it occupies an important place in geometric topology. The article presents the basic concepts and the most important, in our opinion, results of shape theory. Unfortunately, many other interesting problems and results related to this theory could not be covered because of space limitations. The article contains an extensive bibliography for those who wants to gain a more detailed and systematic insight into the issues considered in the survey.Comment: 46 page

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Shape classification based on interpoint distance distributions

    Full text link
    According to Kendall (1989), in shape theory, The idea is to filter out effects resulting from translations, changes of scale and rotations and to declare that shape is “what is left”.While this statement applies in principle to classical shape theory based on landmarks, the basic idea remains also when other approaches are used. For example, we might consider, for every shape, a suitable associated function which, to a large extent, could be used to characterize the shape. This finally leads to identify the shapes with the elements of a quotient space of sets in such a way that all the sets in the same equivalence class share the same identifying function. In this paper, we explore the use of the interpoint distance distribution (i.e. the distribution of the distance between two independent uniform points) for this purpose. This idea has been previously proposed by other authors [e.g., Osada et al. (2002), Bonetti and Pagano (2005)]. We aim at providing some additional mathematical support for the use of interpoint distances in this context. In particular, we show the Lipschitz continuity of the transformation taking every shape to its corresponding interpoint distance distribution. Also, we obtain a partial identifiability result showing that, under some geometrical restrictions, shapes with different planar area must have different interpoint distance distributions. Finally, we address practical aspects including a real data example on shape classification in marine biologyThis work has been partially supported by Spanish Grants MTM2013-44045-P (Berrendero and Cuevas) and MTM2013-41383-P (Pateiro-López

    Singular random matrix decompositions: distributions.

    Get PDF
    Assuming that Y has a singular matrix variate elliptically contoured distribution with respect to the Hausdorff measure, the distributions of several matrices associated to QR, modified QR, SV and Polar decompositions of matrix Y are determined, for central and non-central, non-singular and singular cases, as well as their relationship to the Wishart and Pseudo-Wishart generalized singular and non-singular distributions. We present a particular example for the Karhunen-Lòeve decomposition. Some of these results are also applied to two particular subfamilies of elliptical distributions, the singular matrix variate normal distribution and the singular matrix variate symmetric Pearson type VII distribution
    • …
    corecore