1,045 research outputs found

    Issues about the Adoption of Formal Methods for Dependable Composition of Web Services

    Full text link
    Web Services provide interoperable mechanisms for describing, locating and invoking services over the Internet; composition further enables to build complex services out of simpler ones for complex B2B applications. While current studies on these topics are mostly focused - from the technical viewpoint - on standards and protocols, this paper investigates the adoption of formal methods, especially for composition. We logically classify and analyze three different (but interconnected) kinds of important issues towards this goal, namely foundations, verification and extensions. The aim of this work is to individuate the proper questions on the adoption of formal methods for dependable composition of Web Services, not necessarily to find the optimal answers. Nevertheless, we still try to propose some tentative answers based on our proposal for a composition calculus, which we hope can animate a proper discussion

    Computation of Performance Bounds for Real-Time Systems Using Time Petri Nets

    Full text link

    Sequential Monte Carlo simulation of collision risk in free flight air traffic

    Get PDF
    Within HYBRIDGE a novel approach in speeding up Monte Carlo simulation of rare events has been developed. In the current report this method is extended for application to simulating collisions with a stochastic dynamical model of an air traffic operational concept. Subsequently this extended Monte Carlo simulation approach is applied to a simulation model of an advanced free flight operational concept; i.e. one in which aircraft are responsible for self separation with each other. The Monte Carlo simulation results obtained for this advanced concept show that the novel method works well, and that it allows studying rare events that stayed invisible in previous Monte Carlo simulations of advanced air traffic operational concepts

    Presentation of the 9th Edition of the Model Checking Contest.

    Get PDF
    International audience; The Model Checking Contest (MCC) is an annual competition of software tools for model checking. Tools must process an increasing benchmark gathered from the whole community and may participate in various examinations: state space generation, computation of global properties, computation of some upper bounds in the model, evaluation of reachability formulas, evaluation of CTL formulas, and evaluation of LTL formulas.For each examination and each model instance, participating tools are provided with up to 3600 s and 16 gigabyte of memory. Then, tool answers are analyzed and confronted to the results produced by other competing tools to detect diverging answers (which are quite rare at this stage of the competition, and lead to penalties).For each examination, golden, silver, and bronze medals are attributed to the three best tools. CPU usage and memory consumption are reported, which is also valuable information for tool developers

    Algorithms for Performance, Dependability, and Performability Evaluation using Stochastic Activity Networks

    Get PDF
    Modeling tools and technologies are important for aerospace development. At the University of Illinois, we have worked on advancing the state of the art in modeling by Markov reward models in two important areas: reducing the memory necessary to numerically solve systems represented as stochastic activity networks and other stochastic Petri net extensions while still obtaining solutions in a reasonable amount of time, and finding numerically stable and memory-efficient methods to solve for the reward accumulated during a finite mission time. A long standing problem when modeling with high level formalisms such as stochastic activity networks is the so-called state space explosion, where the number of states increases exponentially with size of the high level model. Thus, the corresponding Markov model becomes prohibitively large and solution is constrained by the the size of primary memory. To reduce the memory necessary to numerically solve complex systems, we propose new methods that can tolerate such large state spaces that do not require any special structure in the model (as many other techniques do). First, we develop methods that generate row and columns of the state transition-rate-matrix on-the-fly, eliminating the need to explicitly store the matrix at all. Next, we introduce a new iterative solution method, called modified adaptive Gauss-Seidel, that exhibits locality in its use of data from the state transition-rate-matrix, permitting us to cache portions of the matrix and hence reduce the solution time. Finally, we develop a new memory and computationally efficient technique for Gauss-Seidel based solvers that avoids the need for generating rows of A in order to solve Ax = b. This is a significant performance improvement for on-the-fly methods as well as other recent solution techniques based on Kronecker operators. Taken together, these new results show that one can solve very large models without any special structure
    corecore