136 research outputs found

    A natural-norm Successive Constraint Method for inf-sup lower bounds

    Get PDF
    We present a new approach for the construction of lower bounds for the inf-sup stability constants required in a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations. We combine the “linearized” inf-sup statement of the natural-norm approach with the approximation procedure of the Successive Constraint Method (SCM): the former (natural-norm) provides an economical parameter expansion and local concavity in parameter—a small(er) optimization problem which enjoys intrinsic lower bound properties; the latter (SCM) provides a systematic optimization framework—a Linear Program (LP) relaxation which readily incorporates continuity and stability constraints. The natural-norm SCM requires a parameter domain decomposition: we propose a greedy algorithm for selection of the SCM control points as well as adaptive construction of the optimal subdomains. The efficacy of the natural-norm SCM is illustrated through numerical results for two types of non-coercive problems: the Helmholtz equation (for acoustics, elasticity, and electromagnetics), and the convection–diffusion equation.United States. Air Force Office of Scientific Research (Grant No. FA 9550-07-1-0425

    A natural-norm Successive Constraint Method for inf-sup lower bounds

    Get PDF
    We present a new approach for the construction of lower bounds for the inf-sup stability constants required in a posteriori error analysis of reduced basis approximations to affinely parametrized partial differential equations. We combine the ``linearized'' inf-sup statement of the natural-norm approach with the approximation procedure of the Successive Constraint Method (SCM): the former (natural-norm) provides an economical parameter expansion and local concavity in parameter-a small(er) optimization problem which enjoys intrinsic lower bound properties; the latter (SCM) provides a systematic optimization framework a Linear Program (LP) relaxation which readily incorporates continuity and stability constraints. The natural-norm SCM requires a parameter domain decomposition: we propose a greedy algorithm for selection of the SCM control points as well as adaptive construction of the optimal subdomains. The efficacy of the natural-norm SCM is illustrated through numerical results for two types of non-coercive problems: the Helmholtz equation (for acoustics, elasticity, and electromagnetics), and the convection-diffusion equation. (C) 2010 Elsevier B.V. All rights reserved

    A Duality Approach to Error Estimation for Variational Inequalities

    Full text link
    Motivated by problems in contact mechanics, we propose a duality approach for computing approximations and associated a posteriori error bounds to solutions of variational inequalities of the first kind. The proposed approach improves upon existing methods introduced in the context of the reduced basis method in two ways. First, it provides sharp a posteriori error bounds which mimic the rate of convergence of the RB approximation. Second, it enables a full offline-online computational decomposition in which the online cost is completely independent of the dimension of the original (high-dimensional) problem. Numerical results comparing the performance of the proposed and existing approaches illustrate the superiority of the duality approach in cases where the dimension of the full problem is high.Comment: 21 pages, 8 figure

    Randomized residual-based error estimators for parametrized equations

    Get PDF
    International audienceWe propose a randomized a posteriori error estimator for reduced order approximations of parametrized (partial) differential equations. The error estimator has several important properties: the effectivity is close to unity with prescribed lower and upper bounds at specified high probability; the estimator does not require the calculation of stability (coercivity, or inf-sup) constants; the online cost to evaluate the a posteriori error estimator is commensurate with the cost to find the reduced order approximation; the probabilistic bounds extend to many queries with only modest increase in cost. To build this estimator, we first estimate the norm of the error with a Monte-Carlo estimator using Gaussian random vectors whose covariance is chosen according to the desired error measure, e.g. user-defined norms or quantity of interest. Then, we introduce a dual problem with random right-hand side the solution of which allows us to rewrite the error estimator in terms of the residual of the original equation. In order to have a fast-to-evaluate estimator, model order reduction methods can be used to approximate the random dual solutions. Here, we propose a greedy algorithm that is guided by a scalar quantity of interest depending on the error estimator. Numerical experiments on a multi-parametric Helmholtz problem demonstrate that this strategy yields rather low-dimensional reduced dual spaces

    Reduced Basis Approximation and A Posteriori Error Estimation for Stress Intensity Factors: Application to Failure Analysis

    Get PDF
    This paper reports the development of reduced basis approximations, rigorous a posteriori error bounds, and offline-online computational procedures for the accurate, fast and reliable predictions of stress intensity factors or strain energy release rate for “Mode I” linear elastic crack problem. We demonstrate the efficiency and rigor of our numerical method in several examples. We apply our method to a practical failure design application.Singapore-MIT Alliance (SMA

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings
    • …
    corecore