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Abstract

We present a new approach for the construction of lower bounds for
the inf-sup stability constants required in a posteriori error analysis of
reduced basis approximations to affinely parametrized partial differential
equations. We combine the “linearized” inf-sup statement of the natural–
norm approach with the approximation procedure of the Successive Con-
straint Method (SCM): the former (natural–norm) provides an economi-
cal parameter expansion and local concavity in parameter — a small(er)
optimization problem which enjoys intrinsic lower bound properties; the
latter (SCM) provides a systematic optimization framework — a Linear
Program (LP) relaxation which readily incorporates continuity and sta-
bility constraints. The natural–norm SCM requires a parameter domain
decomposition: we propose a greedy algorithm for selection of the SCM
control points as well as adaptive construction of the optimal subdomains.
The efficacy of the natural–norm SCM is illustrated through numerical re-
sults for two types of non-coercive problems: the Helmholtz equation (for
acoustics, elasticity, and electromagnetics), and the convection–diffusion
equation.
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1 Introduction

The certified reduced basis method is well developed for both coercive and non-
coercive elliptic affinely parametrized partial differential equations [11, 15, 17].
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The reduced basis approximation of dimension N is built upon (and the reduced
basis error is measured with respect to) an underlying truth discretization of
dimension N which we wish to “accelerate.” The essential acceleration ingre-
dients are Galerkin projection onto a low dimensional space associated with
an optimally sampled smooth parametric manifold [1, 5, 12, 14] — rapid con-
vergence; rigorous a posteriori error bounds for the field variable and associ-
ated functional outputs of interest — reliability and control; and Offline–Online
computational decomposition strategies — rapid response in the real–time and
many-query contexts. In the Online stage, given a new parameter value, we
rapidly calculate the reduced basis (output) approximation and associated re-
duced basis error bound: the operation count is independent of N and depends
only on N � N and Q; here Q is the number of terms in the affine parameter
expansion of the operator.

The a posteriori error bound requires an estimate for the stability factor —
coercivity constant or inf-sup constant — associated with the partial differential
operator. (Although we retain the usual terminology of “constant,” in actual
fact the parametric dependence of these stability factors is crucial and the focus
of this paper.) This stability factor estimate must satisfy several requirements:

(i) it must be a provably strict lower bound for the true stability factor (as-
sociated with the truth discretization);

(ii) it must be a reasonably accurate approximation — O(1) relative error —
of the true stability factor;

(iii) it must admit an Offline–Online computational treatment, based on the
affine parametrization of the partial differential equation, for which the
Online effort is independent of N .

Although it is simple to develop effective upper bounds for stability factors
[8, 9, 13], it is much more difficult to efficiently provide rigorous lower bounds
for stability factors.

There are several approaches to stability factor lower bounds within the
Offline–Online reduced basis context; each approach may be characterized by
the inf-sup formulation and the lower bound procedure. A “natural–norm”
method is proposed in [4, 18]: the linearized–in–parameter inf-sup formulation
has several desirable approximation properties — a Q–term affine parameter
expansion, and first order (in parameter) concavity; however, the lower bound
procedure is rather crude — a framework which incorporates only continuity
information. A Successive Constraint Method (SCM) is proposed in [2, 7, 17]:
the lower bound procedure is rather efficient — a framework which incorporates
both continuity and stability information; however, the classical inf-sup formu-
lation (in which the operator is effectively squared, albeit in the proper norm)
has several undesirable attributes — a Q2–term affine parameter expansion, and
loss of (even local) concavity. Clearly the two approaches are complementary.

In this paper we combine the “linearized” inf-sup statement introduced in
[18] with the SCM lower bound procedure proposed in [2, 7, 17]. The former
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(natural–norm) provides a Q–term affine parameter expansion and local con-
cavity in parameter: a small(er) optimization problem which enjoys intrinsic
lower bound properties. The latter (SCM) provides a systematic optimiza-
tion framework: a Linear Program (LP) relaxation which readily incorporates
effective stability constraints. From a theoretical perspective, the combined
“natural–norm SCM” can be placed on a firm basis in particular for the impor-
tant class of Helmholtz problems. And from the computational perspective, the
natural–norm SCM performs very well in particular in the Offline stage: the
natural–norm SCM is typically an order of magnitude less costly than either
the natural–norm or “classical” SCM approaches alone. We present numerical
results to justify these claims.

In Section 2 we present the general (weak) formulation for second–order
non-coercive elliptic partial differential equations. In Section 3 we introduce the
new “natural–norm SCM”: a local inf-sup approximation, a greedy sampling
strategy for construction of a global inf-sup approximation, and finally the in-
corporation of the global inf-sup bound into reduced basis a posteriori error
estimators as regards both the Offline and Online stages. In Section 4 we ap-
ply the procedure to several examples of the Helmholtz equation in the context
of acoustics, elasticity, and electromagnetics. Section 5 apples the procedure
to an example of the convection–diffusion equation (relevant to Fokker–Planck
treatment of polymeric fluids [10]) while Section 6 contains a few concluding
remarks.

In what follows, we denote the classical SCM method [2, 7, 17] as “classical
SCM2” or simply SCM2 in order to avoid confusion with the new “natural–norm
SCM” method: here the (squared) superscript suggests the undesired Q2–term
affine parameter expansion in the “classical SCM2” method.

2 Formulation

Let us introduce the (bounded) physical domain Ω ⊂ R2 with boundary ∂Ω; we
shall denote a point in Ω by x = (x1, x2). We also introduce our closed parameter
domain D ∈ RP , a point in which we shall denote µ = (µ1, . . . , µP ). Let us then
define the Hilbert space X equipped with inner product (·, ·)X and induced norm
‖ · ‖X . Here (H1

0 (Ω))V ⊂ X ⊂ (H1(Ω))V (V = 1 for a scalar field and V > 1 for
a vector field), where H1(Ω) = {v ∈ L2(Ω),∇v ∈ (L2(Ω))2}, L2(Ω) is the space
of square integrable functions over Ω, and H1

0 (Ω) = {v ∈ H1(Ω)| v|∂Ω = 0} [16];
for inner product and norm we consider

(w, v)X =

∫

Ω

∇w · ∇v + τ

∫

Ω

wv, ‖w‖X = {(w,w)X}1/2

or suitable (equivalent) variants. The (parameter independent) τ is chosen as

τ = inf
w∈X

∫
Ω
∇w · ∇w∫
Ω
ww

;
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this choice provides rapid convergence of the Lanczos procedure for the discrete
inf-sup parameter [17]. In the case of the two-dimensional Maxwell example of
Section 4.5 our space must be modified: Let

X = H0(curl; Ω) =
{
v ∈

(
L2(Ω)

)2 |(∇× v) · ẑ ∈ L2(Ω), n̂× v = 0 on ∂Ω
}

where, in two-dimensions, ∇× v = ( ∂
∂x ,

∂
∂y , 0) × (v1, v2, 0), ẑ is the unit vector

along the x3-axis and n̂ = (n1, n2, 0) is the unit outward normal to ∂Ω; X is
equipped with the following inner product and induced norm

(w, v)H(curl) =

∫

Ω

∇× w · ∇ × v +

∫

Ω

wv, ‖w‖H(curl) =
{

(w,w)H(curl)

}1/2
.

Note that we include the boundary conditions in X for the Maxwell case since
we consider only a single example of this type in Section 4; this is, however, not
an essential restriction.

Let us next introduce a parametrized bilinear form a(·, ·;µ): X × X → R
and suppose it is inf-sup stable and continuous over X: β(µ) > 0 and γ(µ) is
finite ∀µ ∈ D, where

β(µ) = inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X ‖v‖X
,

and

γ(µ) = sup
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X ‖v‖X
.

Further assume that a is “affine” in the parameter such that

a(w, v;µ) =

Q∑

q=1

Θq(µ)aq(w, v), (1)

where Θq(·): D → R and aq(·, ·): X×X → R are parameter-dependent functions
and parameter-independent bilinear forms, respectively, for 1 ≤ q ≤ Q. Finally,
we introduce two linear bounded functionals f : X → R and ` : X → R. We
may then introduce our (well–posed) continuous problem: Given µ ∈ D, find
u(µ) ∈ X such that

a(u(µ), v;µ) = f(v),∀v ∈ X,

and then evaluate the scalar output of interest as s(µ) = `(u(µ)). (In practice,
f and ` may also depend (affinely) on the parameter.)

We comment briefly on the treatment of geometry. The problem of inter-
est is first posed on a (potentially) parameter–dependent “original” domain
Ωo(µ). We then map Ωo(µ) to a reference domain Ω = Ω(µref) by application of
piecewise affine transformations over a coarse triangulation.1 The geometric fac-
tors associated with the mapping are then reflected in the coefficient functions

1We restrict attention in this paper to polygonal domains Ω(µ) for which such a coarse
triangulation and associated affine transformations can always be found; more general curved
boundaries can in fact also be treated in many instances [17].
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Θq, 1 ≤ q ≤ Q. For some simple problems, such as the Helmholtz “microphone”
problem of Section 4.2, the necessary mapping and identification of the affine
form can be performed “by hand”; in other cases, such as the Helmholtz ex-
amples in Sections 4.3–4.4, automatic procedures [6] should be applied both
for convenience (to avoid laborious “by hand” algebraic manipulations) and
efficiency (smaller Q implies more efficient inf-sup lower bounds).

Consider next a truth finite element approximation space XN ⊂ X. Suppose
that N is chosen sufficiently large that a remains inf-sup stable (and continuous)
over XN : βN (µ) > 0 and γN (µ) is finite ∀µ ∈ D, where

βN (µ) = inf
w∈XN

sup
v∈XN

a(w, v;µ)

‖w‖X ‖v‖X
,

and

γN (µ) = sup
w∈XN

sup
v∈XN

a(w, v;µ)

‖w‖X ‖v‖X
.

We now introduce our truth discretization: Given µ ∈ D, find uN (µ) ∈ XN

such that
a(uN (µ), v;µ) = f(v),∀v ∈ XN ,

and then evaluate the output as sN (µ) = `(uN (µ)). In what follows we build
our reduced basis approximation upon, and measure the error in our reduced
basis approximation with respect to, the truth discretization: for clarity of ex-
position we shall suppress the N except as needed (for example) to demonstrate
uniformity as N →∞.

Introduce the supremizing operator Tµ : X → X such that (Tµw, v)X =
a(w, v;µ),∀v ∈ X. It is readily demonstrated that

Tµw = arg sup
v∈X

a(w, v;µ)

‖v‖X
,

and that furthermore

β(µ) = inf
w∈X

‖Tµw‖X
‖w‖X

.

Also note that Tµ may be expressed as

Tµw =

Q∑

q=1

Θq(µ)Tqw

where (Tqw, v)X = aq(w, v),∀v ∈ X, 1 ≤ q ≤ Q, due to the affine assumption.

3 Natural–Norm SCM Lower Bound

3.1 Local Approximation

We now introduce a subdomain of D, Dµ̄, associated (in a way we shall subse-
quently make precise) to a particular parameter point µ̄ in D. In this subsection
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we develop a local lower bound “building block”; in the next section we exploit
these building blocks to construct a global lower bound for the inf-sup constant
over D.

Let us first define an inf-sup constant measured relative to a natural–norm
[18]: given a µ ∈ Dµ̄,

βµ̄(µ) = inf
w∈X

sup
v∈X

a(w, v;µ)

‖T µ̄w‖X‖v‖X
;

of course ‖T µ̄ · ‖X is a well-defined norm and in fact equivalent to ‖ · ‖X since
β(µ) is positive for all µ ∈ D. Next introduce [18] a lower bound for βµ̄(µ),

β̄µ̄(µ) = inf
w∈X

a(w, T µ̄w;µ)

‖T µ̄w‖2X
.

It is clear that β̄µ̄(µ) ≤ βµ̄(µ) and that furthermore β̄µ̄(µ) will be a good ap-
proximation to βµ̄(µ) for µ near µ̄ [18]. (In fact, it is readily demonstrated that
β(µ̄)β̄µ̄(µ) ≤ β(µ), and hence we can translate the lower bound for β̄µ̄(µ) into a
lower bound for β(µ) — our ultimate goal. We reserve this finishing touch for
Proposition 3 of Section 3.2; our focus here is the lower bound for β̄µ̄(µ) and
hence βµ̄(µ).)2

Next we apply the Successive Constraint Method (SCM) to construct lower
and upper bounds for β̄µ̄(µ). First note that

β̄µ̄(µ) = inf
y∈Yµ̄

J (y;µ),

where

J (y;µ) =

Q∑

q=1

Θq(µ)yq

and

Yµ̄ = {y ∈ RQ | ∃wy ∈ X s.t. yq =
aq(wy, T

µ̄wy)

‖T µ̄wy‖2X
, 1 ≤ q ≤ Q}.

Let us now proceed to formulate a lower bound and subsequently an upper
bound.

First introduce the box

Bµ̄ =

Q∏

q=1

[
− γq
β(µ̄)

,
γq
β(µ̄)

]
,

where

γq = sup
w∈X

‖Tqw‖X
‖w‖X

, 1 ≤ q ≤ Q;

2Note that we express the bilinear form a(w, T µ̄v;µ) associated with β̄µ̄(µ) in the sym-
metrized form 1

2
a(w, T µ̄v;µ) + 1

2
a(v, T µ̄w;µ) to facilitate numerical evaluation.
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note that the γq are independent of µ̄. Next introduce the SCM sample

Cµ̄ = {µ̂1
µ̄, . . . , µ̂

Jµ̄
µ̄ }.

We can now define

YLB
µ̄ (Cµ̄) = {y ∈ Bµ̄ |

Q∑

q=1

Θq(µ
′)yq ≥ β̄µ̄(µ′),∀µ′ ∈ Cµ̄},

and then
β̄LB
µ̄ (µ; Cµ̄) = inf

y∈YLB
µ̄ (Cµ̄)

J (y;µ),∀µ ∈ Dµ̄. (2)

We will shortly provide two propositions for the construction (2).
Let us next develop the upper bound. Our primary interest is in the lower

bound — as required for rigor in our reduced basis a posteriori error estimator.
However, the upper bound serves an important role in the greedy algorithm by
which we construct an effective lower bound. We first introduce the set

YUB
µ̄ (Cµ̄) = {y∗µ̄(µ̂jµ̄), 1 ≤ j ≤ Jµ̄}

where
y∗µ̄(µ) = arg min

y∈Yµ̄
J (y;µ);

we then define

β̄UB
µ̄ (µ; Cµ̄) = inf

y∈YUB
µ̄ (Cµ̄)

J (y;µ), ∀µ ∈ Dµ̄. (3)

It is simple to demonstrate that YUB
µ̄ (Cµ̄) ⊂ Yµ̄ ⊂ YLB

µ̄ (Cµ̄) and hence

Proposition 1 The approximations (2) and (3) satisfy

β̄UB
µ̄ (µ; Cµ̄) ≥ β̄µ̄(µ) ≥ β̄LB

µ̄ (µ; Cµ̄)

for all µ in Dµ̄.

Proof. The proof is analogous to the proof of Proposition 1 in [7]. As in [7],
it is clear that YUB

µ̄ (Cµ̄) ⊂ Yµ̄, and hence we focus on the lower bound result

here. For any w ∈ XN we have aq(w, T
µ̄w) = (Tqw, T

µ̄w)X , and furthermore

for any y ∈ Yµ̄ there is a wy ∈ XN satisfying yq =
aq(wy, T

µ̄wy)

‖T µ̄wy‖2X
, 1 ≤ q ≤ Q.

Therefore, for any y ∈ Yµ̄

|yq| =
|(Tqwy, T µ̄wy)X |
‖T µ̄wy‖2X

≤ ‖Tqwy‖X
‖T µ̄wy‖X

=
‖Tqwy‖X
‖wy‖X

‖wy‖X
‖T µ̄wy‖X

≤ γq
β(µ̄)

;
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also,

Q∑

q=1

Θq(µ
′)yq =

Q∑

q=1

Θq(µ
′)
aq(wy, T

µ̄wy)

‖T µ̄wy‖2X

≥ inf
w∈XN

Q∑

q=1

Θq(µ
′)
aq(w, T

µ̄w)

‖T µ̄w‖2X
= β̄µ̄(µ′),

for all µ′ ∈ Cµ̄. Hence Yµ̄ ⊂ YLB
µ̄ (Cµ̄), from which β̄µ̄(µ) ≥ β̄LB

µ̄ (µ; Cµ̄) follows
easily. 2

We can further demonstrate for the more important lower bound

Proposition 2 Under the assumption that the Θq(µ), 1 ≤ q ≤ Q, are affine
functions of µ,

β̄LB
µ̄ (µ; Cµ̄) ≥ sup

σ∈SJµ̄ (µ;Cµ̄)

Jµ̄∑

j=1

σj β̄µ̄(µ̂jµ̄)

for all µ in Dµ̄. Here SJµ̄(µ; Cµ̄) is the set of Jµ̄–tuples σ such that

Jµ̄∑

j=1

σj = 1,

Jµ̄∑

j=1

σj µ̂
j
µ̄ = µ

and 0 ≤ σj ≤ 1, 1 ≤ j ≤ Jµ̄.

Proof. Let σ be an arbitrary element of SJµ̄(µ; Cµ̄). Then,

β̄LB
µ̄ (µ; Cµ̄) = inf

y∈YLB
µ̄ (Cµ̄)

J (y;µ) = inf
y∈YLB

µ̄ (Cµ̄)

Q∑

q=1

Θq(

Jµ̄∑

j=1

σj µ̂
j
µ̄) yq

= inf
y∈YLB

µ̄ (Cµ̄)

Jµ̄∑

j=1

σj

Q∑

q=1

Θq(µ̂
j
µ̄) yq ≥

Jµ̄∑

j=1

σj inf
y∈YLB

µ̄ (Cµ̄)

Q∑

q=1

Θq(µ̂
j
µ̄) yq

=

Jµ̄∑

j=1

σj β̄µ̄(µ̂jµ̄).

Since the result is valid for any σ ∈ SJµ̄(µ; Cµ̄) we may then take the sup — our
bound will do at least as well as the best combination. 2

We note that when saying that our weak form is “affine” in the parameter,
(1), we mean more precisely that the weak form is affine in functions of the
parameter — the Θq(µ), 1 ≤ q ≤ Q. In contrast, when we say (additionally)
that our coefficient functions Θq(µ), 1 ≤ q ≤ Q, are affine functions of µ, we refer
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to the standard definition. The assumption on the weak form, (1), is crucial;
the assumption on the coefficient functions serves primarily for interpretation
and theoretical motivation.

Two cautionary notes. First, in Proposition 1, the lower bound will only be
useful if β̄µ̄(µ) > 0 over Dµ̄: in general the latter is not a consequence of our
(necessary) hypothesis β(µ) > 0,∀µ ∈ Dµ̄; we must thus adaptively divide the
actual parameter domain of interest D into subdomains or “elements” Dµ̄ such
that positivity is ensured. Second, in Proposition 2, most problems, in particular
with any geometric parameter variation, will yield functions Θq(µ), 1 ≤ q ≤ Q,
that are not affine in µ; there will thus be O(|µ−µ̄|2) corrections to our result (2)
— controlled by the box constraints Bµ̄ — which will further implicitly restrict
the extent of Dµ̄.

3.2 Global Approximation: Greedy Sampling Procedure

We construct our domain decomposition Dµ̄k , 1 ≤ k ≤ K, by a greedy approach
similar to the greedy approach applied within earlier SCM proposals. For the
purposes of this section, let us extend our lower and upper bounds of (2) and
(3) to all µ ∈ D: for a given µ̄ ∈ D and a finite sample E ⊂ D we define

gLB
µ̄ (µ; E) = inf

y∈YLB
µ̄ (E)

J (y;µ),∀µ ∈ D,

and
gUB
µ̄ (µ; E) = inf

y∈YUB
µ̄ (E)

J (y;µ),∀µ ∈ D.

Now introduce an “SCM quality control” indicator

εµ̄(µ; E) ≡
gUB
µ̄ (µ; E)− gLB

µ̄ (µ; E)

gUB
µ̄ (µ; E)

∀µ ∈ D.

an SCM tolerance εβ̄ ∈ (0, 1), and an inf-sup tolerance — a non-negative func-
tion ϕ(µ, µ̄). Most simply we may set this latter function to zero, however other
choices may also be of interest; we discuss this further, in the next subsection,
in the reduced basis error estimation context in which our inf-sup lower bound
shall ultimately serve. Finally, we require a very rich train sample Ξ ∈ D.

Let us now define the greedy algorithm in Algorithm 1. Note that the set of
points R play the role of temporary subdomains during the greedy construction
— note also that we define the “size” of R to be the cardinality, |R|. Observe
that in Step 3 of the algorithm there is only one condition under which we
declare the current subdomain/approximation complete (and move to the next
subdomain): the trial sample offers no improvement in the positivity coverage
and the trial sample is not required to satisfy our εβ̄ SCM quality criterion;
in this case we discard the trial point µ∗ and proceed to identify the next
subdomain. The “output” from the greedy procedure is the set of points S =
{µ̄1, . . . , µ̄K} and associated SCM sample sets Cµ̄k , 1 ≤ k ≤ K.
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Algorithm 1 Natural–Norm SCM Greedy Algorithm

1. Set S = {µ̄1}, Cµ̄1 = {µ̄1}, Jµ̄1 = 1, k = 1; here µ̄1 is an arbitrary point in
Ξ;

2. Find
µ∗ = arg max

µ∈Ξ
εµ̄k(µ; Cµ̄k)

and append µ∗ to Cµ̄k to form a “trial” sample C∗µ̄k ;
if Jµ̄k = 1 then

Construct Rµ̄k to be the set of all points µ ∈ Ξ such that gLB
µ̄k (µ; Cµ̄k) >

ϕ(µ, µ̄k);
end if

3. Construct R∗µ̄k to be the set of all points µ ∈ Ξ such that gLB
µ̄k (µ; C∗µ̄k) >

ϕ(µ, µ̄k);
if R∗µ̄k\Rµ̄k = {} and εµ̄k(µ; Cµ̄k) < εβ̄ ,∀µ ∈ Ξ, then
goto 4;

else
Set Cµ̄k = C∗µ̄k , Rµ̄k = R∗µ̄k , Jµ̄k ← Jµ̄k + 1, and goto 2;

end if

4. Update (prune) Ξ← Ξ\Rµ̄k ;
if Ξ = {}, then

Set K = k and terminate;
else

Find
µ̄k+1 = arg min

µ∈Ξ
gLB
µ̄k (µ; Cµ̄k),

append µ̄k+1 to S, set k ← k+ 1, initialize Cµ̄k = {µ̄k}, Jµ̄k = 1, and goto
2;

end if

The improvement for a particular subdomain and identification of a new
subdomain are based on different criteria. For the former εµ̄k(µ; Cµ̄k) is very
effective: the arg max will avoid µ for which the upper bound is negative and

hence likely to lie outside the domain of relevance of T µ̄
k

, yet favor µ for which
the current approximation is poor and hence (likely) to lie at the extremes of

the domain of relevance of T µ̄
k

— thus promoting optimal coverage. In contrast,
for the latter gLB

µ̄k is very effective: the arg min will look for the most negative

value of the lower bound — thus leaving the domain of relevance of T µ̄
k

. In
the Helmholtz examples, the subdomains will roughly correspond to regions
between resonances: we first outline a particular resonance and we then “jump”
to the next resonance.

Let us now define our global lower bound for β̄(µ) as

βLB(µ) = β(µ̄k
∗
)gLB
µ̄k∗ (µ; Cµ̄k∗ ) (4)

10



where
k∗(µ) = arg max

k∈{1...K}
β(µ̄k)gLB

µ̄k (µ; Cµ̄k). (5)

Note that (5) also implicitly defines our subdomains for 1 ≤ k ≤ K:

Dµ̄k =
{
µ ∈ D | β(µ̄k)gLB

µ̄k (µ; Cµ̄k) ≥ β(µ̄k
′
)gLB
µ̄k′

(µ; Cµ̄k′ ), ∀k
′ ∈ {1, . . . ,K}

}
.

Based on this, we have

Proposition 3 The approximation (4) satisfies

βLB(µ) ≤ β(µ)

for all µ in D.

Proof. For any µ ∈ D and any µ̄k ∈ S, we have

β(µ) = inf
w∈XN

sup
v∈XN

a(w, v;µ)

‖w‖X‖v‖X
= inf
w∈XN

sup
v∈XN

a(w, v;µ)

‖T µ̄kw‖X‖v‖X
‖T µ̄kw‖X
‖w‖X

≥ inf
w∈XN

sup
v∈XN

a(w, v;µ)

‖T µ̄kw‖X‖v‖X
inf

w∈XN
‖T µ̄kw‖X
‖w‖X

= βµ̄k(µ)β(µ̄k) ≥ β̄µ̄k(µ)β(µ̄k) ≥ gLB
µ̄k (µ; Cµ̄k)β(µ̄k),

where the final inequality follows from Proposition 1. This clearly holds for
k = k∗(µ), and hence the proof is complete. 2

It is worth making two comments related to the interpolation properties of the
method. Firstly, since βLB(µ̄) = β(µ̄), the method interpolates β at each µ̄ ∈ S.
Secondly, from the concavity argument in Proposition 2, the extreme points of
the Dµ̄ (where β will tend to be small) will be well approximated — which is
important for positivity.

3.3 Reduced Basis: A Posteriori Error Estimators

Let us first describe how the inf-sup lower bound will serve within the reduced
basis context and then summarize the Offline and Online stages of the process.
We now suppose that we are given a reduced basis field approximation uN (µ)
and output approximation sN (µ) = `(uN ). We further introduce the reduced
basis residual,

r(v;µ) ≡ f(v)− a(uN , v;µ),∀v ∈ X.

The reduced basis output error (relative to the truth discretization) then satisfies
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Proposition 4 For any µ ∈ Ξ and more generally any µ in D such that the
lower bound (4) is positive, the reduced basis output error satisfies

|sN (µ)− sN (µ)| ≤ ∆s
N (µ),

where

∆s
N (µ) ≡ ‖`(·)‖X

′‖r(·;µ)‖X′
βLB(µ)

,

and ‖ · ‖X′ refers to the dual norm with respect to XN . 2

The proof is based on arguments provided in [11, 18].
It is clear that the quality of the error bound will depend on the quality of

the inf-sup lower bound. In particular, we note that in the more conventional
error estimate the denominator is given by β(µ); we recover this result only as
µ → µ̄k

∗
— corresponding to relatively small subdomains and hence large K.

However, we can ensure reasonable accuracy by choosing

ϕ(µ, µ̄) = δ
β̃(µ)

β(µ̄)
; (6)

here δ ∈ (0, 1) is an accuracy control parameter and β̃(µ) is any (preferably
cheap) approximation to β(µ). A good option is β̃(µ) ≡ βUB

SCM2(µ), where
βUB

SCM2(µ) is the classical SCM2 upper bound for β(µ) valid over all of D: the
SCM2 upper bound is (diabolically) very accurate compared to the SCM2 lower
bound, and can be constructed “along side” our natural–norm SCM lower bound
at relatively little additional cost — and only in the Offline stage. We note that
since gLB

µ̄ (µ̄; Cµ̄) = 1, the greedy algorithm is guaranteed to converge for any
ϕ(µ, µ̄) < 1 — although ϕ(µ, µ̄) close to 1 may necessitate a large number
(K � 1) of small subdomains. In actual practice at least for the Helmholtz
equation β̄µ̄(µ) is a very good approximation to, and in fact often exactly equal
to, βµ̄(µ), in which case we may plausibly choose ϕ = 0.

Let us now summarize the Offline–Online procedure for the natural–norm
SCM. First define

ngreedy =
K∑

k=1

(
Jµ̄k + 1

)
,

and
Jmax = max

1≤k≤K
Jµ̄k ;

also denote by ntrain the cardinality of Ξ. Let neig denote the number of truth
eigenproblems; for the natural norm SCM we have

neig = Q+
K∑

k=1

(
Jµ̄k + 1

)
.

In the Offline stage we must execute the greedy: we must solve neig truth
eigenproblems over XN ; we must perform ngreedyntrain LP’s — in Q variables

12



with at most 2Q + Jmax constraints — for the lower bounds; and we must
perform O(ngreedyntrainQ) evaluations for the upper bounds. If we invoke the

SCM2 upper bound for β̃ in (6) we incur an additional cost of ngreedyntrainQ(Q+
1)/2 operations, as described in the next paragraph. Only the operation count
for the first item — solution of the eigenproblems — will depend on N . Most
relevant to the current paper, the natural–norm SCM will typically greatly
reduce both neig and ngreedy relative to previously proposed techniques. In the
Online stage we approximate k∗(µ) by a search over a few µ̄ ∈ S near µ: we
must thus perform O(1) LP’s in Q variables with at most 2Q+Jmax constraints
— independent of N .

In Sections 4 and 5 we shall frequently compare the (Online and Offline)
computational effort for the natural–norm SCM and the classical SCM2, and
hence we now briefly discuss SCM2. First, we let Mβ and M+ refer to the
numbers of neighboring points used to impose the SCM2 stability and positivity
constraints, respectively, and we set Q̂ = Q(Q+ 1)/2 [7]. We denote the SCM2

lower bound and upper bound as βLB
SCM2(µ) and βUB

SCM2(µ), respectively. In

the Offline stage we require: (i) neig = 2Q̂ + JSCM2 truth eigenproblems, (ii)

ntrainJSCM2 LPs with Q̂ variables and 2Q̂+Mβ +M+ constraints for the lower

bound, and (iii) ntrainJSCM2Q̂ operations for the upper bound. In the Online

stage, the SCM2 lower bound requires an LP with (again) Q̂ variables and

2Q̂+Mβ +M+ constraints.

4 Examples: The Helmholtz Equation

We first define some general Helmholtz terminology that will be of use sub-
sequently. We restrict attention to two parameters (P = 2). In particular,
we consider a(w, v;µ) = A(w, v;µ) − ω2M(w, v;µ), where A is independent of
ω2, A is coercive and continuous over X, and M is coercive and continuous
over L2(Ω)V . If ω2 is a parameter in the problem under consideration, we set
µ = (ρ = µ1, ω

2 = µ2), otherwise we set ρ = µ; then we introduce an eigenprob-
lem for (χi(ρ) ∈ XN , λi(ρ) ∈ R+), 1 ≤ i ≤ N :

A(χi(ρ), v; ρ) = λi(ρ)M(χi(ρ), v; ρ),∀v ∈ XN ,

ordered such that 0 < λ1(ρ) ≤ λ2(ρ) ≤ · · ·λN (ρ). Clearly any D that does not
include any “resonances” ω2 = λi(ρ), 1 ≤ i ≤ N , shall honor our well–posedness
assumption.

4.1 Anisotropic Wavespeed

Let us first consider the particular scalar (V = 1) Helmholtz example on the
unit square Ω with homogeneous Dirichlet boundary conditions on the bottom
boundary ΓB . This problem takes the form: find w ∈ XN satisfying

∫

Ω

∂w

∂x1

∂v

∂x1
+ µ1

∫

Ω

∂w

∂x2

∂v

∂x2
− µ2

∫

Ω

wv =

∫

Ω

fv, ∀v ∈ XN , (7)
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where f is a forcing function (irrelevant in the present context) and our function
space is given by XN ⊂ {v ∈ H1(Ω)|vΓB = 0}. The first parameter is related
to an anisotropic wavespeed and the second parameter is the reduced frequency
squared, hence from the discussion above ρ = µ1 and ω2 = µ2. It follows from
(7) that V = 1, P = 2, and that we have an affine decomposition with Q = 3:
Θ1(µ) = 1,Θ2(µ) = µ1,Θ3(µ) = −µ2, and

a1(w, v) =

∫

Ω

∂w

∂x1

∂v

∂x1
, a2(w, v) =

∫

Ω

∂w

∂x2

∂v

∂x2
, a3(w, v) =

∫

Ω

wv .

Note that Θq, 1 ≤ q ≤ Q, are affine functions of µ.
Assume that our truth approximation is of tensor product form such that

the discrete problem remains separable. In this case it is simple to demonstrate
by explicit calculation that for any connected Dµ̄ which does not include any
resonances (hence between two resonance lines)

β̄µ̄(µ) = βµ̄(µ),∀µ ∈ Dµ̄;

it thus follows from Proposition 2 that for any such Dµ̄ our lower bound (2)
will in fact be positive over the convex hull of Cµ̄. In this particular case we
observe that Dµ̄ may be quite large and that we will require only a relatively
small sample Cµ̄ to construct a good lower bound. For this problem, neither
cautionary note of Section 3.1 is relevant.

We consider the parameter domain D ⊂ [0.8, 1.2]×[10, 50] shown in Figure 1:
the domain contains 5 unconnected regions separated by 4 resonances — note
that in this case each resonance is simply a straight line. To begin we create
an optimal lower bound “by hand”: we introduce K = 5 subdomains — a
subdomain for each unconnected quadrangular region; for each subdomain 1 ≤
k ≤ K we choose Cµ̄k as the four corners of the subdomain supplemented by two
interior points and the point µ̄k — hence Jµ̄k = 7. The points are illustrated in
Figure 1. We summarize the resulting lower bound in Figure 3(a) as a histogram
of βLB(µ)/β(µ) constructed from a random uniform sample Ξtest over D of size
441.

Let us now apply our greedy strategy for εβ̄ = 0.75, ntrain = 5000, and
ϕ = 0: we obtain K = 12,

Jµ̄k,k=1,...,12 = [14, 10, 8, 18, 12, 2, 2, 2, 2, 2, 2, 1],

and neig = 90. The first five subdomains actually correspond to the five regions
in between the resonances: these five subdomains cover almost the entire domain
D— and in fact largely capture the five unconnected components of D; the final
seven subdomains are “patches” — each contains either one or two µ̂µ̄· points
quite near a resonance. The subdomains and points are illustrated in Figure 2;
the histogram for the greedy is shown in Figure 3(b). We observe that the
greedy performs quite well relative to (in fact, arguably better than) the “by
hand” construction.

As a comparison, we have applied the classical SCM2 method on the same
train sample set for the choice Mβ = 16 (M+ = 0). We obtain neig = 2643:

14



Figure 1: Anisotropic wavespeed problem (“by hand”): Parameter domain D (×
denotes µ̄ and ◦ denotes µ̂ associated to a Cµ̄); dashed lines indicate resonances.

much larger Offline effort, and (since Mβ > Jmax) larger Online effort as well

— in particular since the classical SCM2 involves Q̂ = Q(Q+ 1)/2 terms in the

objective function and 2Q̂+Mβ constraints.

4.2 “Microphone” Problem

Consider the simple acoustics microphone probe Helmholtz problem (V = 1) as
described in [7, 18]. The original domain Ωo(L) is a channel probe inlet followed
by a microphone plenum cavity of height 1/4 +L as shown in Figure 4(a). The
(fixed, parameter independent) mapped domain is given by Ω = Ω(Lref = 1) =
[−1/2, 1] × [0, 1/4](≡ Ωbot) ∪ [0, 1] × [1/4, 5/4](≡ Ωtop). We impose Dirichlet
conditions on the left boundary Γin of Ω. Our function space is thus given by
XN ⊂ {v ∈ H1(Ω)|vΓin

= 0}. The two parameters, µ1 = L and µ2 = ω2,
correspond to the height of the microphone plenum (Ωtop) and the reduced
frequency squared, respectively (hence again ρ = µ1, ω2 = µ2). The parameter
range D = [0.3, 0.6]× [3.0, 6.0] lies between the first and second resonance lines,
as shown in Figure 5.

The affine formulation is recovered for Q = 5, with Θ1(µ) = 1, Θ2(µ) = −µ2,
Θ3(µ) = µ1, Θ4(µ) = 1/µ1, Θ5(µ) = −µ1µ2, and

a1(w, v) =

∫

Ωbot

∇w · ∇v, a2(w, v) =

∫

Ωbot

wv, a3(w, v) =

∫

Ωtop

∂w

∂x1

∂v

∂x1
,
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Figure 2: Anisotropic Wavespeed problem (greedy): Subdomains and the set Cµ̄1 .
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Figure 3: Histograms of βLB(µ)/β(µ) for anisotropic wavespeed problem: (a)

“by hand,” minµ∈Ξtest

βLB(µ)
β(µ)

= 0.036, avgµ∈Ξtest

βLB(µ)
β(µ)

= 0.616; (b) greedy,

minµ∈Ξtest

βLB(µ)
β(µ)

= 0.031, avgµ∈Ξtest

βLB(µ)
β(µ)

= 0.720.
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Figure 4: Microphone problem: (a) Original domain, and (b) Mapped domain.

a4(w, v) =

∫

Ωtop

∂w

∂x2

∂v

∂x2
, a5(w, v) =

∫

Ωtop

wv.

(The inner product is chosen to be the same as in [7].) Note that as is usually
the case for problems with parametrized geometry, the Θq, 1 ≤ q ≤ Q, are no
longer affine functions of µ.

Let us apply our greedy strategy for εβ̄ = 0.75, ntrain = 5000, and ϕ = 0: we
obtain K = 1 and Jµ̄1 = 5 corresponding to neig = 11. The result is considered
“ideal”: the single required subdomain includes only the four corner points of
the parameter domain and µ̄1. We plot β(µ) and βLB(µ) for a sample of 1681
points in D in Figure 6; we present in Figure 7(a) the histogram of βLB(µ)/β(µ)
constructed from a random uniform sample Ξtest over D of size 441. We observe
that the inf-sup quality is rather good even for the non-stringent tolerance ϕ = 0.

This problem is solved by the classical SCM2 in [7]. The new natural–norm
SCM requires less effort than the classical SCM2 in both the Offline and Online
stages: in the Offline stage, the classical SCM2 requires from neig = 52 — for the
“minimized Offline cost” choice Mβ =∞— to neig = 128 — for the “minimized
Online cost” choice Mβ = 4; in the Online stage, even for the “minimized Online
cost” setting, the classical SCM2 requires more computational effort than the
natural–norm SCM due to the O(Q2) terms in the inf-sup expansion of the
former. The histogram of βLB

SCM2(µ)/β(µ) (using the “minimized Online cost”
setting) for the same set Ξtest as above is shown in Figure 7(b) — a modest
improvement over the (ϕ = 0) natural–norm SCM. (We shall consider ϕ 6= 0 in
several later examples.)

4.3 The Hole-in-Block Problem

We consider a Helmholtz acoustics problem (V = 1) which corresponds to a
hole in a square block as shown in Figure 8. The domain is given by Ωo(h) =
[0, 1] × [0, 1]\[h, h + 1/4] × [1/4, 3/4], where h is the parameter to control the
position of the rectangular hole. We choose href = 3/8 for our mapped/reference

17



0.3 0.4 0.5 0.6 0.7 0.8
0

5

10

15

µ1

µ
2

Figure 5: Microphone problem: Parameter domain D; dashed lines indicate reso-
nances.

Figure 6: Microphone problem: β(µ) and βLB(µ).
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Figure 7: Microphone problem: Histogram for Ξtest of (a) βLB(µ)/β(µ);

minµ∈Ξtest

βLB(µ)
β(µ)

= 0.250, avgµ∈Ξtest

βLB(µ)
β(µ)

= 0.639, and (b) βLB
SCM2(µ)/β(µ);

minµ∈Ξtest

βLB
SCM2 (µ)

β(µ)
= 0.528, avgµ∈Ξtest

βLB
SCM2 (µ)

β(µ)
= 0.848.

domain. We impose Dirichlet conditions on Γ4, Γ5 and Γ6, and hence our
function space is given by XN ⊂ X = {v ∈ H1(Ω)|vΓ4,5,6 = 0}. Our P = 2
parameters are µ1 = h and µ2 = ω2 (so that ρ = µ1 here); the parameter domain
D = [1/8, 5/8]× [11/2, 23/2] lies in between the first and second resonance lines,
as shown in Figure 9.

In this case, the identification of the geometric transformations and asso-
ciated affine representation are already cumbersome, and we thus appeal to
the automatic procedures available in the rbMIT c© pre–processor [6]. In this
particular case, we obtain

Θ1(µ) = 3/(6− 8µ1), Θ2(µ) = 3/(8µ1), Θ3(µ) = 1,

Θ4(µ) = µ1, Θ5(µ) = µ2, Θ6(µ) = −µ1µ2;

note again that in the presence of parametrized geometry, we obtain Θq, 1 ≤ q ≤
Q that are not affine functions of µ. We omit the corresponding aq, 1 ≤ q ≤ Q
— integrals of bilinear forms over restricted subdomains of Ω — in the interest
of brevity.

We apply our greedy strategy for εβ̄ = 0.75, ntrain = 5000, and ϕ = 0: we
obtain K = 2 and Jµ̄k,k=1,2 = [35, 5] corresponding to neig = 48. Note that the
first subdomain covers almost the entirety of D, as shown in Figure 9; the second
domain acts as a “patch” for the regions near the resonances. The histogram
of βLB(µ)/β(µ) constructed from a random uniform sample Ξtest over D of size
441 is shown in Figure 10(a). We observe reasonably good quality — certainly
sufficient in the reduced basis error estimation context.

As a comparison, we have applied the classical SCM2 method on the same
train set for the choice Mβ = 16. We obtain neig = 1527: the classical SCM2

approach is roughly 32 times slower than the natural–norm SCM in the Offline
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Figure 8: Hole-in-Block problem: (a) Original domain, and (b) Mapped domain.

Figure 9: Hole-in-Block problem: The first subdomain (shaded) and Cµ̄1 .
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stage. We present in Figure 10(b) the histogram of βLB
SCM2(µ)/β(µ) for the same

set Ξtest as above; note that negative βLB
SCM2(µ) is set to zero in this example. It

is seen that the SCM2 fails to provide a “good” (strictly positive) inf-sup lower
bound for 100 points in the set Ξtest, even though the train sample Ξ is much
larger than the test sample Ξtest. Further tests on several random Ξtest sets
indicate that the probability of obtaining strictly positive SCM2 inf-sup lower
bound is approximately 0.75, as suggested by Figure 10(b). The SCM2 result
can be improved somewhat by increasing ntrain; however, since the SCM2 is
only providing coverage in small neighborhoods of the train points, it is unlikely
that we can obtain complete positivity coverage over D.
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Figure 10: Hole-in-Block problem: Histogram for Ξtest of (a) βLB(µ)/β(µ);

minµ∈Ξtest

βLB(µ)
β(µ)

= 0.029, avgµ∈Ξtest

βLB(µ)
β(µ)

= 0.425, and (b) βLB
SCM2(µ)/β(µ);

minµ∈Ξtest

βLB
SCM2 (µ)

β(µ)
= 0, avgµ∈Ξtest

βLB
SCM2 (µ)

β(µ)
= 0.600.

4.4 The Center Crack Problem

We consider a Helmholtz linear elasticity problem (V = 2) which corresponds to
a plate containing an internal center crack of length 2b under “Mode I” tension.
In consideration of the symmetry of geometry and loading, we consider only
a quarter of the original domain as shown in Figure 11: Ω(b) = [0, 1] × [0, 2]
and Ω (the mapped domain) = Ω(bref = 1/2); note that the crack corresponds
to the boundary Γ1. We model the plate as plane-stress linear isotropic with
(scaled) unity density, unity Young’s modulus, and Poisson ratio ν = 0.3. We
impose a vertical oscillatory uniform force of frequency ω on the top boundary
Γ4; symmetric boundary conditions on Γ2 and Γ5; and stress-free conditions
on Γ1 and Γ3. Our function space is then given by XN ⊂ X ≡ {(v1, v2) ∈
(H1(Ω))2 | v1|Γ2 = 0, v2|Γ5 = 0}. Our P = 2 parameters are µ1 = b and
µ2 = ω2 (so that ρ = µ1); the parameter domain D = [1/5, 4/5] × [3/5, 9/5]
lies in between the first and second resonance lines, as shown in Figure 12.
In this case, the problem satisfies the affine decomposition for Q = 8, which

21



is generated automatically by the software package rbMIT c©[6]; the functions
Θq(µ), 1 ≤ q ≤ Q, are not affine in µ.

ΓΓoo
11 ΓΓoo

22

ΓΓoo
33

ΓΓoo
44

ΓΓoo
55

ΩΩoo((µµ))

bb

ΓΓ11 ΓΓ22

ΓΓ33

ΓΓ44

ΓΓ55

ΩΩ

bbrefref

(a) (b)

Figure 11: Center crack problem: (a) Original domain, and (b) Mapped domain.

The greedy strategy is applied for εβ̄ = 0.75, ntrain = 104, and ϕ = 0: we
obtain K = 9 and Jµ̄k,k=1,...,9 = [83, 31, 19, 13, 10, 7, 5, 6, 3] corresponding to
neig = 194. Note that the first subdomain covers almost the entirety of D, as
shown in Figure 12. The histogram of βLB(µ)/β(µ) constructed from a random
uniform sample Ξtest over D of size 441 is shown in Figure 13. The clustering
of points near the resonances is obviously less than desirable, and will be even
more limiting in higher parameter dimension. However, the natural-norm SCM
does nevertheless greatly improve over the SCM2.

In this case the classical SCM2 approach is not viable — we require many
thousands of truth eigenvalue solutions just to achieve a positive inf-sup lower
bound over a modest train sample.

4.5 Electromagnetic Cavity Problem

We consider Maxwell’s equations in the second order curl-curl formulation: find
E ∈ X = H0(curl; Ω) such that

∇× ν−1∇× E − εω2E = iωJc, x ∈ Ω. (8)

To keep things simple, we focus on the two-dimensional Maxwell’s equation in
transverse electric form where E(x1, x2) = (E1, E2) is the electric vector field,
Jc = (Jc1 , J

c
2) is the current source and (ε(x), ν(x)) are the tensors of electric

permittivity and magnetic permeability, respectively. To simplify matters, we
assume isotropic materials with piecewise constant permittivity and permeabil-
ity in which case the permittivity and permeability tensors take the form ε(x)I
and ν(x)I, respectively, where ε(x) and ν(x) are piecewise constant scalars and
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Figure 12: Center crack problem: The first subdomain (shaded) and Cµ̄1 ; dashed lines
indicate resonances.
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Figure 13: Center crack problem: Histogram of βLB(µ)/β(µ) for Ξtest;

minµ∈Ξtest

βLB(µ)
β(µ)

= 0.018, avgµ∈Ξtest

βLB(µ)
β(µ)

= 0.438.
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I is the identity matrix. Finally ω, set to 5π/2 for this example, reflects the
angular frequency of the electromagnetic wave.

We seek the solution to this problem in the closed geometry illustrated in
Figure 14 in which we assume all exterior boundaries to be perfectly electrically
conducting with vanishing tangential electric fields. The cavity is loaded with
two materials, each occupying half of the cavity. For simplicity we assume that
Ω1 of the cavity is vacuum so that ε1 = ν1 = 1 while the material parameters in
Ω2 are the parameters of the problem, i.e. µ = (ε2, ν2). See [3] and the references
therein for the formulation and analysis of the discontinuous Galerkin method
we are using for this test problem. It is well known that for this problem there
are curved resonance lines, which means that this is a challenging problem for
the natural-norm SCM. The parameter domain is set to D = [2.75, 3.15] ×
[1.01, 1.19], which is between resonances as shown in Figure 15.

In this setting (8) results in the bilinear form a(u, v)

a(u, v) =
(
ν−1∇× u,∇× v

)
Ω
− ω2 (εu, v)Ω ,

which gives the following affine decomposition for Q = 3: Θ1(µ) = 1, Θ2(µ) =
ν−1

2 , Θ3(µ) = ε2, and

a1(u, v) = ν−1
1 (∇× u,∇× v)Ω1

− ω2ε1 (u, v)Ω1
,

a2(u, v) = (∇× u,∇× v)Ω2
,

a3(u, v) = −ω2 (u, v)Ω2
.

Here (·, ·)Ω refers to the L2 inner product restricted to Ω.
We apply the natural norm SCM greedy algorithm for εβ̄ = 0.75, ntrain =

2145, and ϕ = 0 to obtain K = 2, Jµ̄k,k=1,2 = [7, 3] and neig = 15. Figure
16 shows the distribution of Cµ̄1 : Rµ̄1 , of size 2109, covers almost the entirety
of D. This subdomain is almost “ideal”: except the (starting) first point and
the third point (which is outside of Rµ̄1 and has negative β̄µ̄1(µ)), all the other
points are corner points of the polygon. The second subdomain is just a small
patch. To visualize the lower bound, we compute the true inf-sup constant for a
sample of 2100 points in D and plot β(µ) and βLB(µ) in Figure 17. We can see
that in this case the lower bound is rather pessimistic along the intersection line
of the two subdomains: our greedy algorithm is “too greedy” in this example.

Thus, we consider a second test with a nonzero inf-sup tolerance function
ϕ(µ, µ̄) defined by (6) with β̃(µ) ≡ βUB

SCM2(µ) and δ = 0.2. In this second
test case, we obtain K = 4, Jµ̄k,k=1,2,3,4 = [7, 4, 4, 2] and neig = 24. The
set Cµ̄1 does not change, but we obtain a slightly smaller subdomain Rµ̄1 ; the
remaining three subdomains are all just small patches. We plot the resulting
β(µ) and βLB(µ) in Figure 18: the exceptionally small values of the inf-sup LB
are eliminated.

Figure 19 shows histograms of βLB(µ)/β(µ) for the two cases considered
above (δ = 0 and δ = 0.2) — at the expense of 9 more Offline eigenproblems,
we obtain a noticeable improvement in accuracy with δ = 0.2.

We also apply the classical SCM2 for the same train set and with Mβ = 20,
M+ = 6. We obtain neig = 212 — a factor of roughly 14 (respectively, 9) increase
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Figure 14: Geometry of the Electromagnetic Cavity Problem.
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Figure 15: The parameter domain for the Electromagnetic Cavity Problem.
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Figure 16: Electromagnetic Cavity problem: The first subdomain (shaded) and
Cµ̄1 .
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Figure 17: Electromagnetic Cavity problem (δ = 0): β(µ) and βLB(µ).
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Figure 18: Electromagnetic Cavity problem (δ = 0.2): β(µ) and βLB(µ).
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in the number of Offline eigenproblems compared to the δ = 0 (respectively,
δ = 0.2) natural–norm SCM case. Moreover, as observed above, SCM2 also
requires more Online effort since (i) Mβ > Jmax and (ii) the classical SCM

inf-sup expansion contains Q̂ terms.
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Figure 19: Electromagnetic Cavity Problem: Histograms of βLB(µ)/β(µ) with

(a) δ = 0: minµ∈Ξtest

βLB(µ)
β(µ) = 0.063, avgµ∈Ξtest

βLB(µ)
β(µ) = 0.50 and (b) δ = 0.2:

minµ∈Ξtest

βLB(µ)
β(µ) = 0.22, avgµ∈Ξtest

βLB(µ)
β(µ) = 0.55.

5 Convection–Diffusion

Finally, we briefly consider a steady convection–diffusion problem inspired by
recent work on applying reduced basis schemes to the Fokker–Planck equation
from polymer physics [10]. The steady-state Fokker–Planck equation is a non-
coercive convection-diffusion problem — the relevance of the natural–norm SCM
in this context is evident. However, for the sake of exposition in the present
paper, it is more convenient to consider a simple model convection–diffusion
problem that preserves key structural similarities to the Fokker–Planck case.
Note also that, unlike the Helmholtz/Maxwell problems considered above, the
convection–diffusion problem does not exhibit resonance behavior, and is there-
fore representative of a separate class of problems.

We consider a scalar (V = 1) convection–diffusion problem on the unit square
Ω = (0, 1)2 with homogeneous Dirichlet boundary conditions on ∂Ω. The for-
mulation of this problem is: find w ∈ XN ⊂ X ≡ H1

0 (Ω) satisfying

µ1

∫

Ω

∇w · ∇v + µ2

∫

Ω

x1
∂w

∂x1
v −

∫

Ω

x2
∂w

∂x2
v =

∫

Ω

fv, ∀v ∈ XN . (9)

Our two parameters are the diffusion coefficient µ1 and the maximum x1-velocity
µ2; note our imposed convection velocity is given by (µ2x1,−x2). The parameter
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domain is taken to be D ≡ [0.1, 1]× [1, 5], which corresponds to a Peclet number
range of 1 to 50. Note that the problem is coercive on a subset of D — for
example, when µ2 = 1, the convection velocity (x1,−x2) is divergence-free, from
which coercivity follows directly — however we have confirmed numerically that
coercivity is lost in a subregion of D corresponding to smaller µ1 and larger µ2.

In this case the Offline decomposition is readily identified: Q = 3, Θ1(µ) =
µ1,Θ2(µ) = µ2,Θ3(µ) = −1, and

a1(w, v) =

∫

Ω

∇w · ∇v , a2(w, v) =

∫

Ω

x1
∂w

∂x1
v , a3(w, v) =

∫

Ω

x2
∂w

∂x2
v .

Note that the Θq(µ), 1 ≤ q ≤ Q, are affine functions of µ.
We apply the natural–norm SCM scheme to this convection–diffusion prob-

lem with εβ̄ = 0.75, ntrain = 4225, and ϕ as in (6) with β̃ = βUB
SCM2(µ) and

δ = 0.4: we obtain K = 7, Jµ̄k,k=1,...,7 = [9, 6, 8, 10, 6, 6, 3] and hence neig = 55.
We present in Figure 20 β(µ) and βLB(µ) for a sample Ξtest of 400 points in D;
we provide in Figure 21(a) a histogram of βLB(µ)/β(µ) for the same set Ξtest

of 400 parameter points. We achieve a good approximation over the rather
extensive parameter domain.

Finally, we also apply the classical SCM2 approach with the same train
sample and with Mβ = 10. We obtain neig = 36 in this case: Figure 21(b)
shows the histogram of βLB

SCM2(µ)/β(µ); we can see that SCM2 gives a slightly
sharper lower bound and with smaller neig. On the other hand, the natural–
norm SCM requires less Online effort since the classical SCM2 inf-sup expansion
contains Q̂ terms. Overall, SCM2 is the preferred choice for this example since
Q is small, however for a problem of this type with Q � 1 the natural–norm
SCM would most likely be preferred.

6 Concluding remarks

The main computational bottleneck in the development of certified reduced ba-
sis methods for parametrized partial differential equations remains the need to
compute a tight lower bound for the stability parameter, i.e., the inf-sup con-
ditions for non-coercive problems considered here. While there are several past
attempts to pursue this, these techniques suffer from significant computational
cost, effectively reducing the practicality of these methods to problems with a
low dimensional parameter space and simple affine expressions.

In the paper we have, in a novel way, combined two previously proposed
methods to arrive at a new approach which is significantly faster without im-
pacting the accuracy of the lower bound estimate. Through a number of different
examples, we demonstrate a typical Offline reduction of an order of magnitude;
also the Online cost is reduced from Q2 to Q, with Q measuring the complexity
of the affine expansion.

It is expected that this dramatic reduction in computational cost will be
even more pronounced when considering more complex problems, non-affine
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Figure 20: Convection–diffusion problem: β(µ) and βLB(µ).
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Figure 21: Convection–diffusion problem: Histogram for Ξtest of (a) βLB(µ)/β(µ)

with δ = 0.4; minµ∈Ξtest

βLB(µ)
β(µ)

= 0.506, avgµ∈Ξtest

βLB(µ)
β(µ)

= 0.7307, and (b)

βLB
SCM2(µ)/β(µ); minµ∈Ξtest

βLB
SCM2 (µ)

β(µ)
= 0.572, avgµ∈Ξtest

βLB
SCM2 (µ)

β(µ)
= 0.865.
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problems, and problems with a high-dimensional parameter space. We hope to
report on this in future work.
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