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Abstract— This paper reports the development of reduced
basis approximations, rigorous a posteriori error bounds, and
offline-online computational procedures for the accurate, fast and
reliable predictions of stress intensity factors or strain energy
release rate for “Mode I” linear elastic crack problem. We
demonstrate the efficiency and rigor of our numerical method
in several examples. We apply our method to a practical failure
design application.
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estimation, offline-online procedures, fracture mechanics, stress
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I. I NTRODUCTION

The stress intensity factor [18] is one of the most important
quantities in Fracture Mechanics: it characterizes the stress,
strain, and displacement fields in the near crack tip region.
Stress intensity factor plays a dominant role in many fracture
related problems. For example, in many failure design scenar-
ios, we need to accurately evaluate stress intensity factors in
order to determine several fracture parameters (for example,
critical crack length, designed failure life of a component
in the structural system, etc). In practical applications, we
often require fast stress intensity factor calculations in order
to produce satisfied evaluations in reasonable time. In short,
in design new structures or assess the integrity of existing
structures, the stress intensity factor (SIF) need to be computed
repeatedly in real-time; and most importantly, the SIF must be
accurate and reliable.

There are two main approaches to calculates the stress
intensity factor: for simple problem we can either extract
the SIF from reference handbook or database. For more
complicated problems, however we need to directly compute
the SIF numerically, which can be very time consuming.

Our goal is to develop a computational method that provides
both fast and reliable prediction of stress intensity factors
based on the reduced basis method [4], [2], [3], [5], [6], [7],
[16], [20], [15]. The main ingredients of the reduced basis
method are(i) reduced basis approximations [20], [15], [14]
that provide rapid and uniform convergence;(ii) a posteriori
error estimators [20] that provide sharp and rigorous bounds
for the error in the output (here the SIF); and(iii) of-
fline/online computational strategies [20], [15], [14], [21], [25]

that allow rapid calculation of both our output approximation
and associated error bound.

We shall first describe our method, and then apply it to a
particular fracture problem to demonstrate the advantages of
our technique. The paper is organized as follows. In Section
II we introduce first the standard problem statement and then
an equivalent new formulation that enables us to extract our
output− the stress intensity factor− as a “compliant” energy
release rate. In Section III, we discuss the extended finite
element method. In Section IV and Section V, we describe our
reduced basis approximation and the associateda posteriori
error estimation, which is particularly tailored to the stress
intensity factor. In Section VI, we apply our results to one
particular design problem to demonstrate the usefulness of our
technique. And finally, in Section VII, we draw conclusions.

II. A BSTRACT STATEMENT

A. Classical Formulation

We consider a two-dimensional domainΩ ∈ R2 with
boundary∂Ω. We then introduce the Hilbert space

X = {v ≡ (v1, v2) ∈ (H1(Ω))2|vi = 0 on Γi
D, i = 1, 2},

(1)
where Γi

D ⊂ ∂Ω is the part of ∂Ω on which we shall
impose homogeneous Dirichlet (zero displacement) boundary
conditions. HereH1(Ω) = {v ∈ L2(Ω)|∇v ∈ (L2(Ω))2}
whereL2(Ω) is the space of square−integrable functions over
Ω. We equip our space with inner product and associated norm
(·, ·)X and‖ · ‖X =

√
(·, ·)X , respectively.

We then define our parameter setD ∈ RP , a typical point
in which shall be denotedµ ≡ (µ1, . . . , µP ). The parameter
describes the “input” for the problem, such as the physical
properties or geometry of the model; in this paper, the number
of “input” parameters,P will be 3. We further assume that
the domainΩ contains a crack, and (for convenience) thatµ1

represents the crack length.
We next introduce the “exact” two-dimensional plane-strain

linear elasticity model (extension to plane-stress is of course
straightforward [18]). We shall denote dimensional quantities
with a superscript∼; conversely, no superscript∼ implies a
non-dimensional quantity. We scale the dimensional spatial
coordinatesx̃ by a characteristic length̃D to obtain x =



(x1, x2) (∈ Ω). We scale the dimensional displacementũ by
D̃σ̃0/Ẽcrack to obtainu = (u1, u2); hereσ̃0 is a characteristic
(imposed farfield) stress, and̃Ecrack is the Young’s modulus
of the material in the vicinity of the crack.

The displacement fieldu(µ) ∈ X satisfies the weak form

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X; (2)

herea is a parametrized bilinear forma : X ×X ×D → R,
and f is a parametrized linear formf : X × D → R. We
assume that our bilinear forma is coercive,a(w,w;µ) ≥
α(µ)‖w‖2X ≥ α0‖w‖2X , ∀w ∈ X, ∀µ ∈ D, for some
positive α0; continuous,a(w, v;µ) ≤ γ(µ)‖w‖X‖v‖X ≤
γ0‖w‖X‖v‖X , ∀w, v ∈ X, ∀µ ∈ D, for some finiteγ0;
and symmetric,a(w, v;µ) = a(v, w;µ), ∀w, v ∈ X. We also
assume that our linear formf is bounded. Of course,a andf
represent the standard linear elasticity weak form− particular
instance of which we shall develop in the next section.

Moreover, we further require thata(·, ·;µ) and f(·;µ) are
“affine” in the parameter that have the following forms

a(w, v;µ) =
Qa∑
q=1

Θa
q (µ)aq(w, v), (3)

f(v;µ) =
Qf∑
q=1

Θf
q (µ)fq(v), (4)

where Θa
q (µ),Θf

q (µ) : D → R and aq(w, v) : X × X →
R, fq(v) : X → R, are parameter-dependent functions
and parameter-independent continuous bilinear/linear forms,
respectively. We shall further assume that the functionsΘa

q (µ)
and Θq

f (µ) are smooth,Θa
q (µ) ∈ C1(D), 1 ≤ q ≤ Qa and

Θf
q (µ) ∈ C1(D), 1 ≤ q ≤ Qf , and that theaq, 1 ≤ q ≤ Qa,

are symmetric.
We next define our output of interestG(µ): the energy

release rate as [22]

G(µ) = −1
2

Qa∑
q=1

∂Θa
q (µ)

∂µ1
aq(u(µ), u(µ))+

Qf∑
q=1

∂Θf
q (µ)

∂µ1
fq(u(µ)),

(5)
where we recall thatµ1 is the component inµ that represents
the crack length. Note the partial derivatives act only on the
“explicit” µ dependence though the last arguments ofa and
f . We thus introduce a symmetric parametrized bilinear form
b : X ×X ×D and a parametrized linear form̀: X ×D,

b(w, v;µ) = −1
2

Qa∑
q=1

∂Θa
q (µ)

∂µ1
aq(w, v), (6)

`(v;µ) =
Qf∑
q=1

∂Θf
q (µ)

∂µ1
fq(v). (7)

in terms of which our output can be expressed asG(µ) =
b(u(µ), u(µ);µ) + `(u(µ);µ). Note that the outputG(µ) is
the sum of aquadratic output and a“non-compliant” linear
output.

Our abstract statement is then: for anyµ ∈ D, find G(µ) ∈
R given by

G(µ) = b(u(µ), u(µ);µ) + `(u(µ);µ), (8)

where the displacement fieldu(µ) ∈ X satisfies the equilib-
rium equations (2). This problem statement focuses on the
energy release rate; however we can also readily extract the
stress intensity factor (SIF) as a “derived” output.

In this paper we shall restrict our attention exclusively to
“Mode I,” or open-mode, fracture problems. It is known in
fracture mechanics theory [18] that, for open-mode fracture
problems, the non-dimensional stress intensity factorK(µ) =
K̃(µ)/(σ̃0

√
D̃) and energy release rateG are directly related

as

K(µ) =

√
G(µ)

1− ν2
crack

, plane strain, (9)

whereνcrack is the Poisson ratio of the material in the vicinity
of the crack.

B. Expanded Formulation

We consider the following system of equations

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X, (10)

a(z(µ), v;µ) = b(u(µ), v;µ) +
1
2
`(v;µ), ∀v ∈ X. (11)

Note thatz here is essentially the adjoint associated with our
quadratic-linear output [13], [11].

Now we set

U+(µ) =
1
2
(u(µ)+z(µ)), U−(µ) =

1
2
(u(µ)−z(µ)), (12)

and define the parametrized symmetric bilinear formA : X ×
X × D → R and parametrized linear formF : X × D → R
as

A(W,V;µ) = −b(W+, V+;µ) + 2a(W+, V+;µ)− b(W−, V+;µ)
−b(W+, V−;µ)− b(W−, V−;µ)− 2a(W−, V−;µ),

F(V;µ) = f(V+;µ) +
1
2
`(V+;µ)− f(V−;µ) +

1
2
`(V−;µ), (13)

whereX ≡ X × X, andW ≡ (U+, U−), V ≡ (V+, V−).
We equipX with inner product and associated norm(·, ·)X
and ‖ · ‖X =

√
(·, ·)X , respectively: our choice of(·, ·)X is

(W,V)X = a(W+, V+;µ) + a(W−, V−;µ),∀W,V ∈ X ; here
µ is a particular parameter inD.

It is observed thatF(U(µ);µ), U = (U+, U−), is equivalent
to the energy release rateG(µ) in the “classical” formulation.
We refer to [22] for a detailed proof of this equivalence.

Our abstract statement is thus: givenµ ∈ D, find (the
“compliant” output)

G(µ) = F(U(µ);µ), (14)

whereU(µ) ∈ X satisfies

A(U(µ),V;µ) = F(V;µ), ∀V ∈ X ; (15)

hereA andF are the “big” operators defined in (13).
We note that it directly follows from the definitions ofA and

F that bothA andF are affine in the parameter. In particular,

A(W,V;µ) =
QA∑
q=1

ΘAq (µ)Aq(W,V), (16)

F(V;µ) =
QF∑
q=1

ΘFq (µ)Fq(V), (17)



where ΘAq : D → R,ΘFq : D → R, andAq(W,V) : X ×
X → R, Fq(V) : X → R are parameter-dependent functions
and parameter-independent continuous bilinear/linear forms,
respectively. Moreover,ΘAq (µ) ∈ C1(D), 1 ≤ q ≤ QA, and
ΘFq (µ) ∈ C1(D), 1 ≤ q ≤ QF , and theAq, q ≤ q ≤ QA, are
symmetric. We further assume that our problem is well posed
for all µ ∈ D [22], [25].

We note that the new “expanded” formulation is no longer
coercive, however, our output− the energy release rate− is
now “compliant.” The former is bad news; the latter is good
news. However, the real merit of the expanded formulation
is that we effectively eliminate the nonlinearity of the output
which will in term permit us to develop much simpler, more
efficient, and much sharper error bounds. It will be seen in the
numerical results of Section V that the “expanded” formulation
does indeed produce better results and in particular much
sharpererror estimators than the “classical” formulation [24].

C. Model Problem

We consider a linear elasticity problem corresponding to a
plate with a circular hole from which emanate two cracks. We
consider only one quarter of the original problem, due to the
symmetry of the model about the centerlines.
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Fig. 1. Original dimensional domain (left); Non-dimensional domain
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We show in Figure 1 the resulting domaiñΩ0(d̃, R̃, L̃). The
radius of the hole isR̃, the length of each side crack is̃d,
and the plate is of width2w̃ and of length2L̃. We impose
(normal) tractionσ̃0 at the top,Γ̃T , zero traction on the hole,
Γ̃hole, zero traction on the crack,̃Γcrack, zero traction on the
right side of the plate,̃ΓR, and symmetry boundary conditions
on Γ̃C1 andΓ̃C2 . We consider homogeneous isotropic material
characterized by Young’s modulus̃E and Poisson ratioν =
0.3.

We choose for our characteristic length scaleD̃ = w̃ and
denote our new non-dimensional domain and our boundaries
correspond tõΩ(µ), and Γ̃hole, Γ̃crack, Γ̃C1 , Γ̃C2 , Γ̃T , Γ̃R as
Ω0(µ), andΓ0

hole, Γ0
crack, Γ0

C1
, Γ0

C2
, Γ0

T , Γ0
R, respectively.

In this example we shall considerP = 3 parameters:
µ1 ≡ d (the non-dimensional distance from the center of
the hole to the crack tip),µ2 ≡ R (the non-dimensional
radius of the hole), andµ3 ≡ L (the non-dimensional
length of the specimen); our parameter domain is given by
D = [0.325, 0.625] × [0.1, 0.25] × [1.5, 2.0]. We chooseµ =
(0.475, 0.175, 1.75) in the definition of our inner product.

The governing equation is the partial differential equations
of linear elasticity: the displacement fieldu0(x;µ) ∈ X0

satisfies ∫
Ω0(µ)

∂u0
i

∂xj
Cijkl

∂vk

∂xl
=

∫
Γ0

T

v, ∀v ∈ X, (18)

whereCijkl = c1δijδkl +c2(δikδjl +δilδjk) is the constitutive
tensor. Herec1 andc2 are the Lame constants for plain strain

c1 =
ν

(1 + ν)(1− 2ν)
, c2 =

1
2(1 + ν)

; (19)

recall that ν = 0.3 is the Poisson ratio. Note thatX0 =
{(v1, v2) ∈ (H1(Ω))2|v1|Γ0

C2
= 0, v2|Γ0

C1
= 0}.

In order to apply our methodology we mapΩ0(µ) → Ω ≡
Ω0(µ = µref = (dref = 0.475, Rref = 0.175, Lref = 1.75)):
the mapping is piecewise-affine over the12 subdomains,Ω0

i →
Ωi, i = 1, . . . , 12. We refer to [22] for a completed mapping
procedure and coefficient lists. The abstract statement for our
classical formulation is then recovered forQa = 24, Qf = 4.
As a result, we also recoverQA = 40 and QF = 6 for our
expanded formulation.

III. F INITE ELEMENT METHOD

A. Extended finite element method

The characteristic property of elliptic linear PDEs, such as
the linear elasticity problems of interest here, is that the solu-
tion u(µ) is smooth if the domain boundaryΓ and load/source
f(·;µ) are smooth; in particular, if the domain boundaryΓ
is not smooth− as in fracture-mechanics crack problems
− singularities can occur, with corresponding detriment to
convergence rates. One way to overcome this difficulty is to
effectively or actually include the relevant singularities in the
finite element space. In this paper, we use the extended finite
element method, which exploits the partition of unity property
[8] to enrich the region around the crack tip with appropriate
asymptotic fields. It is shown in [9] that the extended finite
element method yields an optimal convergence rate ofhm

(in the X norm) for elements of polynomial orderm. Our
extended finite element formulation is discussed in details in
[22], here we only describe our results.

Our finite element approximation to the extended formula-
tion is: givenµ ∈ D, find (the “compliant” output)

Gh(µ) = Fh(Uh(µ);µ), (20)

whereUh(µ) ≡ (U+h, U−h) ∈ Xh is our approximate solution
to U(µ) ≡ (U+, U−) ∈ X and satisfies

Ah(Uh(µ),V;µ) = Fh(V;µ), ∀V ∈ Xh; (21)



hereXh ≡ Xh×Xh whereXh is our enriched finite element
approximation as described in [22];Ah andFh are defined
as our numerical quadratures of the bilinear/linear formsAh

and Fh. We also denote byAhq, 1 ≤ q ≤ QA, andFhq,
1 ≤ q ≤ QF our numerical quadratures of the bilinear/linear
forms associated with our affine parameter decompositionsAq,
1 ≤ q ≤ QA, andFq, 1 ≤ q ≤ QF , respectively.

B. Truth approximation

We shall build our reduced basis approximation upon, and
measure the error in our reduced basis approximation relative
to, a fixed “truth” finite element approximationUht

− a surro-
gate for the exact solution,U . In general, we must anticipate
that 2N = dim(Xht) will be very large, and we must hence
require that our reduced basis approach is mathematically and
computationally stable asN →∞.

We denote our truth approximation expanded space of
dimension 2Nt as Xht = Xht × Xht . We imbue Xht

with the inner product(W,V)Xht
≡ ah(W+, V+;µ) +

ah(W−, V−;µ),∀W = (W+,W−), V = (V+, V−) ∈ Xht
, and

induced norm‖W‖Xht
=

√
(W,W)Xht

. Then, givenµ ∈ D,
we findUht ∈ Xht such that

Aht
(Uht

,V;µ) = Fht
(V;µ), ∀V ∈ Xht

; (22)

we can then evaluate the energy release rate as

Ght
(µ) = Fht

(Uht
;µ). (23)

Finally, we define the truth inf-sup and continuity “con-
stants” as

βht
(µ) ≡ inf

W∈Xht

sup
V∈Xht

Aht
(W,V;µ)

‖W‖Xht
‖V‖Xht

, (24)

and

γht
(µ) ≡ sup

W∈Xht

sup
V∈Xht

Aht
(W,V;µ)

‖W‖Xht
‖V‖Xht

, (25)

respectively.

C. Numerical results

For this Mode I fracture model, the stress intensity factor
can again be extracted from the energy release rate via (9).
Furthermore, the SIF values for this problem are available for
selected values ofµ2 = R in the form of a graph and table
generated by numerical pre-solution of the elasticity PDE by
a boundary element method [12].

Our truth approximation spaceXht
is of dimension2Nt =

7, 224. The mesh is refined near the crack tip, and the
enriched region is chosen as the first element ring around
the crack tip (IM contains M = 27 nodes). We present
our results in the form of a “boundary correction factor”

F (d, R,L) = K(d,R,L)√
d

=
√

G(d,R,L)
d(1−ν2) , and associated finite

element approximationFh(d, R,L) (for the particular case
ν = 0.3); for purposes of presentation, we fixL = 2.0.
We observe in Figure 2 that our finite element results are in
good agreement with the reference results (only) available for
R = 0.1 andR = 0.25.
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Fig. 2. Example 3.3: Boundary correction factor results forL = 2.0.

IV. REDUCED BASIS APPROXIMATION

In this Section we shall develop the reduced basis approxi-
mation for our expanded formulation− a non-coercive sym-
metric elliptic PDE with “compliant” output. As already indi-
cated, the reduced basis is constructed not as an approximation
to the exact solutionU(µ), but rather as an approximation to
the finite element truth approximationUht

(µ).

A. Approximation

We shall denote by2N the dimension of the reduced basis
approximation space; we shall denote by2Nmax the upper
limit on the dimension of the reduced basis space− Nmax

determines the maximum reduced basis accuracy that can be
achieved. We next introduce a set of nested samples in parame-
ter space,SN = {µ1 ∈ D, . . . , µN ∈ D}, 1 ≤ N ≤ Nmax, and
an associated set of Lagrangian reduced basis approximation
spacesWN = span{(Uht+(µ), 0), (0, Uht−(µ)), 1 ≤ n ≤
N}, 1 ≤ N ≤ Nmax; hereUht

(µ) = (Uht−(µ), Uht+(µ))(µ)
is the solutions to (22) forµ = µn. In actual practice we
orthogonalize the snapshots with respect to the inner product
(·, ·)Xht

in order to preserve the good “conditioning” of the
underlying PDE, orWN = span{ζm, 1 ≤ m ≤ 2N}, 1 ≤
N ≤ Nmax, where the basis functionsζn (respectively,
ζn+N ) are generated from the(Uht+(µn), 0) (respectively,
(0,Uht−(µn))) by a Gram-Schmidt process with respect to
the inner product(·, ·)Xht

. It is clear from the definition of
WN that the reduced basis space contains “snapshots” on the
parametrically induced manifoldMht

≡ {Uht
(µ)|µ ∈ D}. We

can anticipate thatMht
is very low-dimensionalandsmooth,

and henceUN (µ) → Uht(µ) (and GN (µ) → Ght(µ)) very
rapidly; we should thus realizeN � Nt.

Our reduced basis approximationUN (µ) is then obtained by
a standard Galerkin projection (for other options, see [15]): for
any µ ∈ D, we findUN (µ) ∈ WN such that

Aht
(UN (µ),V;µ) = Fht

(V;µ), ∀V ∈ WN ; (26)

the reduced basis approximationGN (µ) to Ght
(µ) can then be

evaluated as

GN (µ) = Fht
(UN (µ);µ). (27)



B. Offline/Online computational procedure

As we have argued, it is plausible that in order to obtain an
accurate reduced basis approximationUN (µ), the dimension
of WN , 2N can be quite small. However, since the elements
of WN are still “large” in some sense (the representation of
ζn is of length2Nt), the computational savings are not self-
evident. In this section we develop an offline-online procedure
that will enable us to evaluate our approximations in real-time.

To begin, we expand our reduced basis approximation as

UN (µ) =
2N∑
j=1

UNj (µ)ζj . (28)

By choosingV = ζi, i = 1, . . . , 2N , in (26), it follows that
the coefficientsUNj

(µ) satisfy the2N × 2N linear algebraic
system for1 ≤ i ≤ 2N

2N∑
j=1

{ QA∑
q=1

ΘAq (µ)Ahtq(ζj , ζi)
}
UNj

(µ) =
QF∑
q=1

ΘFq (µ)Fhtq(ζi);

(29)
this representation is a direct result of the affine decomposition
of a and f . The reduced basis output can then be calculated
as

GN (µ) =
2N∑
j=1

{ QF∑
q=1

Θq
F (µ)Fq(ζj)

}
UNj (µ). (30)

The offline/online computational strategy is now clear.
In the offline stage− performedonce− we first solve for

the ζj , 1 ≤ j ≤ 2Nmax; we then form and storeAhtq(ζi, ζj),
1 ≤ i, j ≤ 2Nmax, 1 ≤ q ≤ QA; and finally we form and store
Fhtq(ζj), 1 ≤ j ≤ 2Nmax, 1 ≤ q ≤ QF . Note all quantities
computed in this stage areindependentof the parameterµ
and the spaces are “hierarchical”− we can extract from them
any quantity for a particularN ≤ Nmax. This stage requires
O(4QAN2

maxNt) operations andO(4QAN2
max + 4QFNmax)

“permanent” storage. Note the operation count is dominated
by the formation of theAhtq(ζi, ζj) inner products, once the
ζj have been obtained; in the former we exploit the sparsity
in the finite element stiffness matrix.

In the online stage− performedmany times, for each new
value of µ − we first assemble and solve the2N × 2N
linear algebraic system (29) to obtainUNj

, 1 ≤ j ≤ 2N ;
we next perform the summation in (30) to obtainGN (µ). The
operation count in this stage isO(4QAN2 + 2QFN) and
O(8N3) to assemble and solve the linear algebraic system,
respectively, and finallyO(4QFN2) to evaluate the output.
The essential point is that the complexity of the online stage
is completely independent ofNt; sinceN � Nt, we expect−
in the online/deployed stage− significant computation savings
relative to the classical direct approach. (Of course, the offline
effort is considerable, and hence we must be in the many-query
or real-time context to justify the reduced basis approach.)

C. Sample Construction

To construct our nested samplesSN and the associated
reduced basis spacesWN , we pursue a greedy algorithm: the
strategy is rather heuristic, but in practice works very well.
For a detailed discussion of the strategy, we refer to [22].

D. Numerical Results

The convergence rate for the reduced basis approximation
GN (µ) is shown in Table I. The errorEN is the maximum of
the relative error,|Ght

(µ) − GN (µ)|/|Ght
(µ)| over a random

parameter test sampleΞtest ∈ D of size ntest = 3, 000.
We observe very rapid convergence withN : even for this 3-
parameter (P = 3) case, we need onlyN = 30 to obtain
10−4 accuracy. The computational savings is still very high
(despite the large number of terms in our affine expansion):
our online evaluation is about10, 000 times faster than the
conventional evaluation; moreover, it is shown as in Table I
that the reduced basis solutionGN (µ) and the “truth” solution
Ght

(µ) are indistinguishable forN ≥ 20.

N EN EN ηGN
Online Time

GN ∆G
N

5 1.04E-01 1.66E+02 37.19 1.80E-05 2.12E-03

10 6.01E-02 8.72E+01 30.67 2.32E-05 2.37E-03

20 9.08E-03 4.39E-01 41.86 5.95E-05 3.96E-03

30 2.36E-03 1.31E-01 53.17 1.92E-04 5.03E-03

35 9.42E-05 3.17E-02 51.40 2.12E-04 7.10E-03

40 4.58E-05 8.86E-03 42.42 2.78E-04 7.69E-03

TABLE I

REDUCED-BASIS ERROR, ERROR BOUND, EFFECTIVITY, AND ONLINE TIME

TO EVALUATE GN , ∆G
N , AS A FUNCTION OFN ; THE TIMING RESULTS ARE

NORMALIZED WITH RESPECT TO THE TIME TO CALCULATE THE“ TRUTH”

OUTPUTGht .

V. A POSTERIORIERROR ESTIMATION

In this section we shall discuss the development ofa
posteriori error estimators for reduced basis approximations.
We require that the estimators areinexpensive− the online
computational complexity is independent ofNt; reliable −
an upper bound of the true error; andsharp − not overly
conservative. We first discuss the construction of a lower
bound for the inf-sup parameterβht(µ); we then describe our
a posteriorierror estimation procedures for our problem.

A. Lower Bound for the Inf-Sup Parameter

Our error bound requires an inexpensive (online) and rea-
sonably accurate lower boundβLB(µ) for the “truth” inf-
sup stability parameterβht(µ). We construct our lower bound
for the inf-sup parameter by the “natural norm” technique
developed in [23]. The construction of the lower bound of
βLB(µ) is also decomposed into two stages: the offline stage
− performed once, with computational cost depending onNt

and usuallyexpensive; and the online stage− performed many
times, with the computational cost independent ofNt and very
inexpensive. We shall refer to the detailed procedure in [23].

B. Error bounds

We first define our error bound for the error in the output
as

∆G
N (µ) ≡ ε2

N (µ)
βLB(µ)

, (31)



where εN (µ) is the dual norm of the residual defined as
εN (µ) = supV∈Xht

Rht (V;µ)

‖V‖Xht

and Rht
(V;µ) = Fht

(V) −
Aht

(UN (µ),V;µ),∀V ∈ Xht
is the residual associated with

UN (µ).
We next define our the effectivity associated with our error

bound for the output as

ηGN (µ) ≡
∆G

N (µ)
|Ght(µ)− GN (µ)|

. (32)

It is show in [22], [25] that the output effectivity satisfies

ηGN (µ) ≥ 1, ∀µ ∈ D; (33)

equivalently,∆G
N (µ) is a rigorous upper bound for the error

in our reduced basis output.
We also define our approximation of the (non-dimensional)

stress intensity factorKN (µ) and associated error bounds
∆K

N (µ) based on (9) as

KN (µ) =
1
2

{√
GN (µ)−∆G

N (µ) +
√
GN (µ) + ∆G

N (µ)
}

, (34)

∆K
N (µ) =

1
2

{√
GN (µ) + ∆G

N (µ)−
√
GN (µ)−∆G

N (µ)
}

. (35)

It readily follows [25] that

KN (µ)−∆K
N (µ) ≤ K(µ) ≤ KN (µ) + ∆K

N (µ), ∀µ ∈ D.
(36)

These lower and in particular upper bounds for the SIF are
extremely useful in applications that requirehighly accurate
(and typically conservative) stress intensity factor evaluations
such as Non-Destructive Evaluation (NDE), crack growth
prediction, or brittle failure applications.

C. Offline/Online Computational Procedure

It remains to develop associated offline-online computa-
tional procedure for the evaluation of∆G

N (µ) and in particular
εN (µ), the dual norm of the residual. We begin from our
reduced basis approximationUN (µ) =

∑2N
n=1 UNn(µ)ζn and

affine decomposition to express the residual as

Rht(V;µ) =
QF∑
q=1

ΘFq (µ)Fhtq(V) (37)

−
QA∑
q=1

2N∑
n=1

ΘAq (µ)UNn(µ)Ahtq(ζn,V),∀V ∈ Xht .

It is clear from linear superposition that we can express
êht(µ) ∈ Xht as

êht
(µ) =

QF∑
q=1

ΘFq (µ)Cq +
QA∑
q=1

2N∑
n=1

ΘAq (µ)UNn(µ)Lqn, (38)

where (Cq,V)Xht
= Fhtq(V), ∀V ∈ Xht

, 1 ≤ q ≤ QF ,
andLqn = −Ahtq(ζn,V), ∀V ∈ Xht

, 1 ≤ n ≤ 2N, 1 ≤
q ≤ QA; note that these problems are simple parameter-
independent Poisson problems (albeit over a somewhat com-
plicated enriched space).

It thus directly follows that

‖êht
(µ)‖2Xht

=
QF∑
q=1

QF∑
q′=1

ΘFq (µ)ΘFq′(µ)(Cq, Cq′)Xht

+2
QF∑
q=1

QA∑
q′=1

2N∑
n=1

ΘFq (µ)ΘAq′(µ)UNn(µ)(Cq,Lq′n)Xht
(39)

+
QA∑
q=1

QA∑
q′=1

2N∑
n=1

2N∑
n′=1

ΘAq (µ)ΘAq′(µ)UNn(µ)UNn′(µ)(Lqn,Lq′n′)Xht
,

in terms of which we can then evaluateεN (µ) =√
‖êht

(µ)‖2Xht
. The expression (39) is simply a summation

of products of parameter-dependent functions and parameter-
independent inner products. The offline-online decomposition
is now clear.

In the offline stage, we first solve for the quantitiesCq, 1 ≤
q ≤ QF ; Lqn, 1 ≤ n ≤ 2Nmax, 1 ≤ q ≤ QA; we then
perform and store the parameter-independent inner products,
(Cq, Cq′)Xht

, 1 ≤ q, q′ ≤ QF ; (Cq,Lq′n)Xht
, 1 ≤ n ≤ 2Nmax,

1 ≤ q ≤ QF , 1 ≤ q′ ≤ QA; and(Lqn,Lq′n′)Xht
, 1 ≤ n, n′ ≤

2Nmax, 1 ≤ q, q′ ≤ QA. This requiresO(2NmaxQ
A + QF )

“truth” finite element Poisson solutions andO(4N2
max(Q

A)2+
2NmaxQ

AQF + (QF )2) “Nt inner products.”
In the online stage, given a new parameter valueµ, we

simply evaluate the sum (39) in terms ofΘAq (µ), ΘFq (µ)
and UNn(µ) and the pre-computedparameter-independent
inner products. The operation count for this stage is only
O(N2(4QA)2 + 2NQAQF + (QF )2) − independent ofNt.
We do note that for our more complicated (affine) geometric
mappings,QA can be quite large; we thus expect− due to the
(QA)2 scaling− that ∆G

N will be more expensive to evaluate
(online) thanGN ; we confirm this in the next section.

D. Numerical results

We present in Table I the error bounds and effectivities for
Example 3.3 as a function ofN . The error bound reported,EN ,
is the maximum of the relative error bound,∆G

N (µ)/|Ght
(µ)|,

over the same test sampleΞtest of Section IV.C. We denote
by ηGN the average of the effectivity,ηGN (µ), over Ξtest. We
observe relatively good effectivity: ourηGN is usually of order
O(10− 100).

It is seen that the computational savings are still very high:
one online evaluation for an output and the associated error
bound forN = 30 is about 80-100ms compared to approxi-
mately 9-12s for a “truth” solution; our online evaluation (even
with error estimation) is still about 90-150 times faster than
the classical approach. We also note from the timings that the
cost of ∆G

N is significantly greater than the cost ofGN : the
reason it thatQA = 40 is relatively large for this problem due
to the more complicated (affine) geometric mappings near the
hole. As a result, the computational time for∆G

N (which has
dominant complexity orderO(4(QA)2N2)) is much greater
than the computational time forGN (which is O(8N3)) for
small N .



VI. A PPLICATIONS

In this section, we shall apply our results to a (rather simple)
fracture analysis problem to demonstrate the advantage of our
technique.

In the previous sections, we have constructed our reduced
basis approximation to estimate stress intensity factors for
the crack-hole problem. Our reduced basis approximation
can estimate stress intensity factor and its associated error
for an arbitrary (non-dimensional) parameterµ ∈ D, where
D = [0.325, 0.625]× [0.1, 0.25]× [1.5, 2.0]. For a given set of
(dimensional) “input”µ̃ ≡ (d̃, R̃, L̃, w̃), we can estimate our
stress intensity factor̃K(µ̃) and its associated error∆K̃(µ̃).
We shall denotẽµ1 ≡ d̃ as our crack length parameter from
now on to avoid any confusion.

A. Design analysis

The fatigue life of a component may be dominant de-
termined by the propagation of crack. In many structure
components contain small initial crack that does not cause
failure at first, the crack, however, will develop under fatigue
loadings until it eventually exceeds the tolerated length and
causes failure. Thus, to ensure the structure component does
not fracture, the crack must not be grow to a critical size
during the design life of the component.

By applying fracture mechanics principles it is possible to
predict the number of cycles spent in growing a crack to
some specified length or to final failure. It is well-known that,
assuming constant amplitude load fluctuation, the rate of crack
growth in a specimen in the “stable growth” material region
is given by Paris’s law [19]

dµ̃1

dNc
= C(∆K̃(µ̃1))m, (40)

where µ̃1 is the crack length,Nc is the number of cycles,
∆K̃(µ̃1) is the stress intensity fluctuation corresponds to the
crack lengthµ̃1 and C,m are Paris’s constants. Paris’s con-
stants are different for different materials and are determined
by experiments. Assuming constant amplitude load fluctuation
with constant stress range∆σ̃ = σ̃max − σ̃min, the stress
intensity factor fluctuation is given by∆K̃(µ̃1) = ∆σ̃K̃(µ̃1).

We now define our design scenario. We consider a crack-
hole model corresponds tõw = 4.0 (in.), L̃ = 8.0 (in.) and
R̃ = 0.8 (in.). The material isA514 Martensitic steel, of which
Paris’s constants areC = 0.66× 10−8 andm = 2.25 and the
critical stress intensity factor is̃KIC = 150 (ksi

√
in.) [19]. We

further assume that the minimum initial crack length isµ̃1 =
1.4 (in.), and the constant stress range isσ̃ ∈ [σ̃min, σ̃max] ≡
[25, 45] (ksi). We now need to estimate the design life of the
component and the critical crack length.

The analysis will be separated into two steps. We shall
first calculate the critical crack length̃µcr

1 that would cause
fracture. We then integrate the crack growth rate expression
(40) betweenµ̃1 to µ̃cr

1 to obtain the design life of the
component.

We calculate the critical crack length using a binary search
algorithm. The critical crack length is defined as the crack
length that would cause fracture, in particular, the correspond-
ing stress intensity factor for̃σmax will be equal to the material

critical stress intensity factor,̃K(µ̃cr
1 ) = K̃IC [19]. With the

given data, we obtaiñµcr
1 = 2.2514 (in.) after 26 iterations,

which corresponds to28 reduced basis evaluations using
N = 40 basis. Thanks to oura posteriorierror estimation, by
pursue another two binary searches for the upper bound/lower
bound of the critical crack length [25], we can produce an
error estimation for our calculation,̃µcr

1 ∈ [2.2509, 2.2518],
for our reduced basis approximation withN = 40 basis. The
result show that our estimation is very accurate− the different
between our result and the result using stress intensity factor
calculations by direct finite element method is only of order
O(10−3), and approximately100 times faster, as shown in the
previous sections.

We then integrate the crack growth rate by a simple Euler
integration scheme to obtain the design life ofNcr = 15, 694
(cycles); the integration requires160 stress intensity factor
evaluations. Again, we can safely produce an error estimation
for our calculation by constructing two separated integrations
based on our critical crack length range that obtained earlier
[25], the results are shown in Figure 3. It is observed that for
N = 30 basis, the accuracy of our prediction is acceptable.
For the case we useN = 30 basis, the computation involves
404 stress intensity factor evaluations and only takes less than
one minute.

14,500 15,000 15,500 16,000 16,500 17,000 17,500 18,000
2.2

2.22

2.24

2.26

2.28

2.3

2.32

2.34

2.36

Number of cycles N
c

cr
iti

ca
l c

ra
ck

 s
iz

e

 

 

N = 40
N = 30
N = 20
N = 10

Fig. 3. Final design solution for different number of basisN in the
reduced basis approximation.

We further assume the design life,Ncr, has to be larger, in
particular,Nmax

cr = 20, 000 (cycles), thus the current design is
inadequate. That requires us to modify our design parameter
by changing the designed constant load stress range. We shall
keep the maximum stress value and find the new minimum
stress value that meet our new requirement. We again use the
design analysis above as a “black box” and pursue another
“outer” binary search, which we shall call our “black box”
design analysis at each iteration. We finally obtained the new
maximum constant stress range∆σ̃ = 18.025 (ksi), or the new
stress range is̃σ ∈ [26.975, 45.000] (ksi) after 12 iterations,
which only takes less than11 minutes. This demonstrate that
in many-query applications, our method works very efficiently.



B. Crack growth simulations

In practical, the stress range will rarely be the same to the
designed parameter. In that case, fast crack growth simulation
results would be very useful because it provides fast evaluation
on the condition of the model. We conclude by providing
several crack growth simulations for the final design parameter
and different values of∆σ̃, usingN = 15 basis, in Figure 4.
For each∆σ̃ value, the simulation takes only around15
seconds. We can conclude that our method can be used to
provide very fast (or real-time) crack growth evaluations.
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Fig. 4. Crack growth simulation results; the solid line is the predicted
crack growth curve, the dash lines represent the error region of our
calculations.

VII. C ONCLUSIONS

We conclude that, our approach provides stress intensity
factors at certified relative accuracy of10−3 or 10−4 at less
than (1/100)th the online cost of conventional numerical
techniques. The savings would be even larger for problems
with more complex geometry and solution structures, and in
particular in higher space dimensions with correspondingly
largerNt. We emphasize that the stress intensity factor/energy
release rate is obtained very inexpensively but also reliably−
thanks to the rigorous and relatively sharpa posteriori error
bounds.

We also demonstrate the advantages of our technique by
applying our results to a (rather simple) fracture applications.
By using our technique, we are be able to handle complex
failure design analysis that requires many-query of stress
intensity factor evaluations. It is also possible to produce
several fracture parameter estimations in real-time using our
approach. We conclude that applications in fracture mechanics
which require either real-time computation (for example, Non-
Destructive Evaluation or failure prediction) or many-query
computation (fatigue crack growth prediction, say) of the
stress intensity factor/energy release rate can benefit from our
approach.

However, we emphasize that the method isnot useful if only
one (or a few) stress intensity factor evaluations are needed,
due to the very expensive computational cost at the offline
stage.
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