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Abstract—This paper reports the development of reduced that allow rapid calculation of both our output approximation
basis approximations, rigorous a posteriori error bounds, and and associated error bound.
offline-online computational procedures for the accurate, fast and We shall first describe our method, and then apply it to a

reliable predictions of stress intensity factors or strain energy .
release rate for “Mode I’ linear elastic crack problem. We particular fracture problem to demonstrate the advantages of

demonstrate the efficiency and rigor of our numerical method OUr technique. The paper is organized as follows. In Section
in several examples. We apply our method to a practical failure 1l we introduce first the standard problem statement and then

design application. an equivalent new formulation that enables us to extract our
Index Terms— reduced basis approximation,a posteriorierror ~ Output— the stress intensity facter as a “compliant” energy
estimation, offline-online procedures, fracture mechanics, stress release rate. In Section Ill, we discuss the extended finite
intensity factor, energy release rate, linear elasticity, finite element glement method. In Section 1V and Section V, we describe our
method, quadratic outputs. reduced basis approximation and the associatgubsteriori
error estimation, which is particularly tailored to the stress
|. INTRODUCTION intensity factor. In Section VI, we apply our results to one
The stress intensity factor [18] is one of the most importaparticular design problem to demonstrate the usefulness of our
quantities in Fracture Mechanics: it characterizes the streks;hnique. And finally, in Section VII, we draw conclusions.
strain, and displacement fields in the near crack tip region.
Stress intensity factor plays a dominant role in many fracture Il. ABSTRACT STATEMENT
related problems. For example, in many failure design scenar- classical Formulation
ios, we need to_accurately evaluate stress intensity factors IRve consider a two-dimensional domaid € R2
order to determine several fracture parameters (for examp|
critical crack length, designed failure life of a componen
in the structural system, etc). In practical applications, weX = {v = (vi,v2) € (H*(Q))?|v; =0 on T%, i = 1,2},
often require fast stress intensity factor calculations in order (1)
to produce satisfied evaluations in reasonable time. In shavhere T, C 99 is the part of 9Q on which we shall
in design new structures or assess the integrity of existimgpose homogeneous Dirichlet (zero displacement) boundary
structures, the stress intensity factor (SIF) need to be computesditions. HereH'(Q)) = {v € L%(Q)|Vv € (L?*(22))?}
repeatedly in real-time; and most importantly, the SIF must behere L?((2) is the space of squaréntegrable functions over
accurate and reliable. Q. We equip our space with inner product and associated norm
There are two main approaches to calculates the stréss)x and|| - || x = /(:,)x, respectively.
intensity factor: for simple problem we can either extract We then define our parameter $etc R”, a typical point
the SIF from reference handbook or database. For marewhich shall be denoteg = (p1,...,up). The parameter
complicated problems, however we need to directly computlescribes the “input” for the problem, such as the physical
the SIF numerically, which can be very time consuming. properties or geometry of the model; in this paper, the number
Our goal is to develop a computational method that provide$ “input” parameters,P will be 3. We further assume that
both fast and reliable prediction of stress intensity factorsthe domainf contains a crack, and (for convenience) that
based on the reduced basis method [4], [2], [3], [5], [6], [7epresents the crack length.
[16], [20], [15]. The main ingredients of the reduced basis We next introduce the “exact” two-dimensional plane-strain
method arg(i) reduced basis approximations [20], [15], [14]inear elasticity model (extension to plane-stress is of course
that provide rapid and uniform convergenée;) a posteriori straightforward [18]). We shall denote dimensional quantities
error estimators [20] that provide sharp and rigorous boundéth a superscript-; conversely, no superscript implies a
for the error in the output (here the SIF); aridii) of- non-dimensional quantity. We scale the dimensional spatial
fline/online computational strategies [20], [15], [14], [21], [25Foordinatesi by a characteristic lengttD to obtainz =

with
%UndaryﬁQ. We then introduce the Hilbert space



(z1,22) (€ Q). We scale the dimensional displacemanby where the displacement field(n) € X satisfies the equilib-
D&O/Emck to obtainu = (uy,us); heregy is a characteristic rium equations (2). This problem statement focuses on the
(imposed farfield) stress, anl....x is the Young’s modulus energy release rate; however we can also readily extract the
of the material in the vicinity of the crack. stress intensity factor (SIF) as a “derived” output.
The displacement field (1) € X satisfies the weak form In this paper we shall restrict our attention exclusively to
“Mode |,” or open-mode, fracture problems. It is known in
a(u(p),vip) = fvip), W€ X; 2) fracture mechanics theory [18] that, for open-mode fracture
herea is a parametrized bilinear form: X x X x D — R, problems, the non-dimensional stress intensity faéf¢r) =
and f is a parametrized linear fornf : X x D — R. We K (u)/(5,V/D) and energy release raté are directly related
assume that our bilinear form is coercive,a(w,w;u) > as
a(w)|w|% > agllw|%, Vw € X, Vu € D, for some G(p) )
positive ag; continuous, a(w, v; 1) < ~v(u)|wlx|lvllx < K(u)=4/{—, > —» planestrain, ©)
Ylwlx|vlx, Yw,v € X, Vu € D, for some finiteyy; _ , crack o o
and symmetrica(w, v; i) = a(v, w; 1), Yw,v € X. We also wherev,,..x is the Poisson ratio of the material in the vicinity
assume that our linear fortfiis bounded. Of course, and f  ©f the crack.
represent the standard linear elasticity weak fermarticular
instance of which we shall develop in the next section. ) ) )
Moreover, we further require that(-, ;1) and f(-; ) are We consider the following system of equations

B. Expanded Formulation

“affine” in the parameter that have the following forms a(u(p),vip) = flu;p), Yve X, (10)
Q“ 1
a(w,v;p) = Z 02 (1)ag(w,v), (3) a(z(p), vip) = blu(p), v; p) + §£(v§ﬂ)v Yo e X. (11)
g=1 Note thatz here is essentially the adjoint associated with our

Q7 quadratic-linear output [13], [11].
flosp) = Y081 fq(v), (4)  Now we set
= Uy () = 2 () +2(0)), U— (1) = = (uli)— (1)), (12)

where ©%(p), 0} (1) : D — R and aq(w,v) : X x X — 2 2

R, f,(v) : X — R, are parameter-dependent function@nd define the parametrized symmetric bilinear fodm .t x
and parameter-independent continuous bilinear/linear formg,* P — R and parametrized linear forh : X x D — R
respectively. We shall further assume that the functiofgu) S

and ©%(u) are smooth©g(u) € C1(D), 1 < ¢ < Q* and AW, V;p) = —b(Wy, Vi; ) + 2a(Wy, Vs ) — bW, Vs )

(1) € C1(D), 1< ¢ < Q/, and that thes,, 1 < ¢ < Q", —b(W, Vo ) = B(W, Vo ) — 2a(W-, Vs ),
are symmetric. 1 1
We next define our output of interest(x): the energy FWin) = F(Vis ) + 56V 1) = f(Vos ) + 56V ), (13)

release rate as [22] where X = X x X, andW = (U,,U_), V = (Va,V_).

Q" 9ga Q' We equipX’ with inner product and associated noim-)
1 002 () 007 (1) quip p : _ ) x
G(u) = -5 821 aq(u(u)m(u))JrZ 3(;1 fq(u(p)),and | - ||x = +/(-,-)x, respectively: our choice of,-)x is

q=1

W W)y =a(Wy,Visn) +a(W_,V_; @), YW,V € X; here
. . ) 7 is a particular parameter if.
where we recall that; is the component i that represents * |1 is observed tha (U (u); ), U = (U, U_), is equivalent

the c_rqck length. Note the partial derivatives act only on thg e energy release raté ) in the “classical” formulation.
explicit” 1 dependence though the last arguments: @nd e refer to [22] for a detailed proof of this equivalence.
f. We thus introduce a symmetric parametrized bilinear form - apstract statement is thus: givene D, find (the
b: X x X x D and a parametrized linear forfn: X x D, “compliant” output)

0
1 204 (1) G(p) = FUW); 1), 14
bw,vip) = —5 3 L agwe), () ) = FUwi) -
= M wherel/(u) € X satisfies
Q' C) — ) )
007 (1 AUp), Vip) = FVip), YV eEX; (15)
Losp) = > ol )fq(v)- @) iy o
O here A and F are the “big” operators defined in (13).

o=t We note that it directly follows from the definitions gf and

in terms of which our output can be expressed($) = £ that both.A andF are affine in the parameter. In particular,
blu(p), w(pw); 1) + £(u(p); ). Note that the outpuG(u) is

X ) . Q*

the sum of aguadratic output and &non-compliant” linear

output. ™ P P AW, Vi) = Y07 (AW, V), (16)
Our abstract statement is then: for gmy D, find G(u) € =1

R given by

F(V;p)

Q]-‘
PCHAMEANE 17)
G (1) = blu(p), w(p); p) + Llu(p); ), (8) =



where G)g‘ : D — R, @f : D — R, and AW, V) : X x We choose for our characteristic length scale= @ and

X — R, Fy(V) : X — R are parameter-dependent functiondenote our new non-dimensional domain and our boundaries
and parameter-independent continuous bilinear/linear formsyrespond td(x), andCnote, Ceracks Leys Deyy Iy T as
respectively. Moreover®;!(1) € C'(D), 1 < ¢ < @4, and Q%(p), andT} ., 0, ., T, T2, 'Y, T'%, respectively.

crack?

O (n)eCY(D),1<q< Qf and theA,, ¢ < ¢ < Q4, are In this example we shall consideP = 3 parameters:
symmetric. We further assume that our problem is well posed = d (the non-dimensional distance from the center of
for all u € D [22], [25]. the hole to the crack tip)us R (the non-dimensional

We note that the new “expanded” formulation is no longeadius of the hole), and:s = L (the non-dimensional
coercive, however, our output the energy release rate is length of the specimen); our parameter domain is given by
now “compliant” The former is bad news; the latter is goo@® = [0.325,0.625] x [0.1,0.25] x [1.5,2.0]. We chooser =
news. However, the real merit of the expanded formulatidi0.475,0.175,1.75) in the definition of our inner product.
is that we effectively eliminate the nonlinearity of the output The governing equation is the partial differential equations
which will in term permit us to develop much simpler, moref linear elasticity: the displacement field(z; ) € X°
efficient, and much sharper error bounds. It will be seen in tisatisfies
numerical results of Section V that the “expanded” formulation Ouf Ovy,
does indeed produce better results and in particular much /Q /ro v, WweX

sharpererror estimators than the “classical” formulation [24].
whereCUM = 10,0k +C2(0ik 051 + 649,51 ) 1S the constitutive

tensor. Heree; and@c, are the Lame constants for plain strain
C. Model Problem y 1
We consider a linear elasticity problem corresponding to a = —(1 o)1 —2w) Co = 72(1 n V)B 19)
plate with a circular hole from which emanate two cracks. We i ) ) 0
consider only one quarter of the original problem, due to tHgCall thatv = 0.3 is the Poisson ratio. Note that™ =

(18)

symmetry of the model about the centerlines. {(vi,00) € (H1())? [v1lry, = 0,v2[pg, = 0}.
In order to apply our methodology we map (1) — Q =
T T T T T 5 O(p = firef = (qref = 0.475, Rier = 0.175, Lyet = 1.75)):
£y o the mapping is piecewise-affine over tmésubdomalnsﬂg —
T T T Q;,i=1,...,12. We refer to [22] for a completed mapping

procedure and coefficient lists. The abstract statement for our
classical formulation is then recovered Qf = 24, Q/ = 4.
As a result, we also recovep = 40 and Q7 = 6 for our

expanded formulation.

I1l. FINITE ELEMENT METHOD
A. Extended finite element method

The characteristic property of elliptic linear PDEs, such as
% the linear elasticity problems of interest here, is that the solu-
tion u(u) is smooth if the domain boundafyand load/source
f(-; 1) are smooth; in particular, if the domain bounddry

is not smooth — as in fracture-mechanics crack problems
~ — singularities can occur, with corresponding detriment to
convergence rates. One way to overcome this difficulty is to
effectively or actually include the relevant singularities in the

o ok ot

‘ C g ‘ L0 ! finite element space. In this paper, we use the extended finite
T 0 element method, which exploits the partition of unity property
Q<d7 R, L) Q (“) [8] to enrich the region around the crack tip with appropriate

asymptotic fields. It is shown in [9] that the extended finite
Fig. 1. Original dimensional domain (left); Non-dimensional domain
(right) "lement method yields an optimal convergence rateh'df

(in the X norm) for elements of polynomial order. Our

We show in Figure 1 the resulting domdi¥ (d, R, L). The extended finite element formulation is discussed in details in
radius of the hole is?, the length of each side crack i [22]. here we only describe our results.
and the plate is of widtied and of length2l.. We impose Our finite element approximation to the extended formula-
(normal) tractions, at the top,['r, zero traction on the hole, tion is: giveny € D, find (the “compliant” output)
Fh(ﬁl? zdero ft;ictlolntg? the caraclr,md;, zgro t:jactlon 03 tthe Gn (1) = Fr(Un(p); 1), (20)
right side of the platel’z, and symmetry boundary conditions _ . . .
onT¢, andl'c,. We consider homogeneous isotropic materi hLe{reL{;ﬁ,u)U_ (UU”“ U/{/h) EdXh tl_sfour approximate solution
characterized by Young's modulus and Poisson ratior = 0 U(u) = (U4, U-) € X and satisfies
0.3. Ah(uh(u), V; /J) = fh(V; M), YV e &p; (21)



hereX), = X, x X, whereXj, is our enriched finite element =T
approximation as described in [22};, and F;, are defined '

as our numerical quadratures of the bilinear/linear fords
and F,. We also denote byd,,, 1 < ¢ < Q*, and F,,

1 < g < QF our numerical quadratures of the bilinear/linear
forms associated with our affine parameter decompositigns
1<q¢< QA andF,, 1 <q< Q7 respectively.
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B. Truth approximation 11

We shall build our reduced basis approximation upon, and
measure the error in our reduced basis approximation relative
to, a fixed “truth” finite element approximatid#,, — a surro- 0o~ 03 d
gate for the exact solutiod/. In general, we must anticipate .
that 2\ = dim(X},) will be very large, and we must henceFi9- 2. Example 3.3: Boundary correction factor results foe= 2.0.
require that our reduced basis approach is mathematically and
computationally stable a8 — co.

We denote our truth approximation expanded space of IV. REDUCED BASIS APPROXIMATION

dimension 2V, as &, = Xj, x Xp,. We imbue A3, In this Section we shall develop the reduced basis approxi-
with the inner productW,V)x,, = an(W4,Vii) +  mation for our expanded formulation a non-coercive sym-

an (W=, Vi), VW = (W, W_), V = (Vi V) € A}, and - metric elliptic PDE with “compliant” output. As already indi-
induced norm|W||x,, = /(W, W)y, . Then, givenu € D, cated, the reduced basis is constructed not as an approximation
we find,, € X, such that ' to the exact solutiod/ (1), but rather as an approximation to

the finite element truth approximatia,, (u).
Ap,Un,, Vi) = Fp,(Vsp), WV EXn;  (22)

we can then evaluate the energy release rate as A. Approximation

Gn, (1) = Fn,(Un,; 1) (23)  We shall denote b2 N the dimension of the reduced basis

. ) - L e APpproximation space; we shall denote &Y., the upper
Finally, we define the truth inf-sup and continuity CONY. it on the dimension of the reduced basis SPACEN

stants” as determines the maximum reduced basis accuracy that can be
B ()= inf su Ap, OV, Vi ) 7 (24) achieved. We nextintroduce a set of nested samples in parame-
' WeXn, ve,, [IWllx,, VI, ter space§y = {111 €D, ..., uxy € D}, 1 < N < Npay, and
and an associated set of Lagrangian reduced basis approximation
_ An, (W, V; ) spacesWy = span{(Up,+(n),0),(0,Up,—(p)),1 < n <
Vh, (1) = WSUp SUD T (25 N}, 1 <N < Nuax: herelty, (1) = (Un,— (1), Un,+ (1)) (12)
fe TR " " is the solutions to (22) fop = u,. In actual practice we
respectively. orthogonalize the snapshots with respect to the inner product

(*s+)x,, in order to preserve the good “conditioning” of the
underlying PDE, oWy = span{(n,1 < m < 2N},1 <

< Nuax, Where the basis functions, (respectively,
+n) are generated from théA,, . (u,),0) (respectively,

C. Numerical results N
For this Mode | fracture model, the stress intensity fact

can again be extracted from the energy release rate via U, (1n))) by a Gram-Schmidt process with respect to
Furthermore, the SIF values for this problem are available fgr, inner product-, ), . It is clear from the definition of

selected values ofi; = R in the form of a graph and table i, 1ot the reduced basis space contains “snapshots” on the
generated by numerical pre-solution of the elasticity PDE %rametrically induced manifoltt,,, = {L4y, (11)|u € D}. We

a tc);)untda:ry]/ element mtgthod [1;]{' < of di — can anticipate that,, is very low-dimensionaknd smooth
ur truth approximation spacé, is of dimension2\; = .4 hencey oy and ver
7,224. The mesh is refined near the crack tip, and the v (1) he(p) (@Nd G () = Gn, (1)) very

ioh ion is ch he fi I : (%idly; we should thus realiz& < N;.
enriched region is chosen as the first element ring aroundy 1o q\ced basis approximatiaiy (1) is then obtained by
the crack tip £y, contains M = 27 nodes). We present

- - a standard Galerkin projection (for other options, see [15]): for
our results in the form of a “boundary correction factor’ pro) ( P 15D

any p € D, we findUy () € Wy such that
F(d,R,L) = % = w/igf’_Ru’QL)), and associated finite

element approximatior¥, (d, R, L) (for the particular case An, Un (), Vi) = Fr,(Vip), WV € Wi (26)
v = 0.3); for purposes of presentation, we fix = 2.0. . L
We observe in Figure 2 that our finite element results are 'ilﬂe Iredu<c:jed basis approximatigy () to Gr, (1) can then be
good agreement with the reference results (only) available ford uated as

R=0.1andR = 0.25. Gn (1) = Fn, Un (p); p)- (27)




B. Offline/Online computational procedure D. Numerical Results

As we have argued, it is plausible that in order to obtain an The convergence rate for the reduced basis approximation
accurate reduced basis approximatidg (), the dimension Gy (u) is shown in Table I. The errdEy is the maximum of
of Wy, 2N can be quite small. However, since the elementhe relative error|Gp, (1) — Gn ()| /|Gr, ()| over a random
of Wy are still “large” in some sense (the representation glarameter test sampl€i.s; € D of size nysy = 3, 000.
¢ is of length2\;), the computational savings are not selfWWe observe very rapid convergence with even for this 3-
evident. In this section we develop an offline-online proceduparameter P = 3) case, we need onlW = 30 to obtain
that will enable us to evaluate our approximations in real-tim¢0—* accuracy. The computational savings is still very high
To begin, we expand our reduced basis approximation agdespite the large number of terms in our affine expansion):
N our online evaluation is about0, 000 times faster than the
Un (1) = ZUNj ()¢ (28) conventional evaluation; moreover, it is shown as in Table |
i—1 that the reduced basis solutiéty (1) and the “truth” solution

By choosingV = (;,7 = 1,...,2N, in (26), it follows that Gn. (n) are indistinguishable fo > 20.

the coefficientd/y, (1) satisfy the2N x 2N linear algebraic

Online Time

system forl < i < 2N N En En 7% =

gN AN
2N Q% Q7 5 || 1.04E-01| 1.66E+02| 37.19 | 1.80E-05| 2.12E-03
S LD 078 () Ang (G G Y, (1) =D OF (1) Finyg (Gi); 10 || 6.01E-02| 8.72E+01| 30.67 | 2.32E-05| 2.37E-03
=1 q=1 a=1 20 || 9.08E-03| 4.39E-01 | 41.86 | 5.95E-05| 3.96E-03
_ S _ (29) | 30 | 2.36E-03| 1.31E-01 | 53.17 | 1.92E-04| 5.03E-03
this representation is a direct result of the affine decomposition | 35 || 942e.05| 3.17E-02 | 51.40 | 2.12E-04| 7.10E-03
of ¢ and f. The reduced basis output can then be calculated | 40 || 4.58E-05| 8.86E-03 | 42.42 | 2.78E-04| 7.69E-03

as 2N  QF TABLE |

— q qa(c.
gN(/i) — § { § @}_(’u)j—‘ (Cg)}uN_,» (M) (30) REDUCED-BASIS ERROR ERROR BOUND EFFECTIVITY, AND ONLINE TIME
j=1 q=1 TO EVALUATE G, A]gv, AS A FUNCTION OF N; THE TIMING RESULTS ARE
NORMALIZED WITH RESPECT TO THE TIME TO CALCULATE THE' TRUTH"

The offline/online computational strategy is how clear.
OUTPUTGp,, .

In the offline stage— performedonce — we first solve for
the ¢;, 1 < j < 2Npax; We then form and storely, (¢, ¢5),
1 <4,j <2Npmax, 1 < ¢ < Q4; and finally we form and store
Fneg(G)y 1 < 5 < 2Npax, 1 < ¢ < Q7. Note all quantities
computed in this stage aredependentof the parameten V. A POSTERIORERROR ESTIMATION
and the spaces are “hierarchical’we can extract from them In this section we shall discuss the developmentaof
any quantity for a particulalV. < Ny... This stage requires posteriori error estimators for reduced basis approximations.
O(4QAN2, _N,;) operations and)(4QAN2, .+ 4QF Ny.) We require that the estimators areexpensive— the online
“permanent’ storage. Note the operation count is dominaté@mputational complexity is independent 4f;; reliable —
by the formation of thedy,,,(¢i, ¢;) inner products, once the @n upper bound of the true error; astiarp — not overly
¢; have been obtained; in the former we exploit the sparsigpnservative. We first discuss the construction of a lower
in the finite element stiffness matrix. bound for the inf-sup parametgk,, (11); we then describe our

In the online stage— performedmany timesfor each new & posteriorierror estimation procedures for our problem.
value of © — we first assemble and solve tHEV x 2N
linear algebraic system (29) to obtady,, 1 < j < 2N; A. Lower Bound for the Inf-Sup Parameter

we next perform the summation in (30) to obt&@lR (11). The  Our error bound requires an inexpensive (online) and rea-
operation count in this stage ©(4Q"'N? + 2Q”N) and sonably accurate lower bound; ;(x) for the “truth” inf-
O(8N?) to assemble and solve the linear algebraic systegyp stability parametes,, (11). We construct our lower bound
respectively, and finallO(4Q” N?) to evaluate the output. for the inf-sup parameter by the “natural norm” technique
The essential point is that the complexity of the online staggyeloped in [23]. The construction of the lower bound of
is completely independent f;; sinceN <V, we expect- 3, .(,,) is also decomposed into two stages: the offline stage
in the online/deployed stage significant computation savings _ performed once, with computational cost depending\dn
relative to the classical direct approach. (Of course, the offlingg usuallyexpensiveand the online stage performed many
effort is considerable, and hence we must be in the many-qu@fes, with the computational cost independentgfand very

or real-time context to justify the reduced basis approach.)jnexpensiveWe shall refer to the detailed procedure in [23].

C. Sample Construction B. Error bounds

To construct our nested samplés; and the associated e first define our error bound for the error in the output
reduced basis spacégy, we pursue a greedy algorithm: the,g

strategy is rather heuristic, but in practice works very well.

2
g _ en (1)
For a detailed discussion of the strategy, we refer to [22]. Ax(u) = (31)

Bre(u)’



where ey (u) is the dual norm of the residual defined as It thus directly follows that

en(u) = subyer,, st and Ry, (Vip) = Fi, (V) - o o
Ap, Un (1), V5 ), YV € X, is the residual associated with . F(y

t t € It == @ C aC L
Z/{N(/l) H h ”A.’,Lf qz;qlz:l q )X}t

We next define our the effectivity associated with our error 0% 04 2N
bound for the output as

i . 23 > 07 (WO (Una(1)(Cor Lara) v, (39)
ng ( A ( ) (32) qg=1¢'=1n=1

Q* Q* 2N 2N

M = 161G — Gn Gl .
It is show in [22], [25] that the output effectivity satisfies +z; 231 221 21 & N (U (1) (Larns Larns) 0,
q=1¢'=1n=1n’
$(u)>1, YueD; 33
vz 1 Ve ’ (33) in terms of which we can then evaluatey(p) =
equivalently, A%, (i) is a rigorous upper bound for the error /N én, (1 )H%QL The expression (39) is simply a summation

in our reduced basis output. of products of parameter-dependent functions and parameter-
We also define our approximation of the (non-dimensionafgependent inner products. The offline-online decomposition
stress intensity facto{y (x) and associated error boundss now clear.

AR (1) based on (9) as In the offline stage, we first solve for the quantit@&s 1 <

1 < Q ‘ana 1 <n< 2NH1&X7 1 < q < Q“A we then

= {\/QN(“) = A% () + \/gN(N) + AQN(#)} (34) perform and store the parameter-independent inner products,
(CQ’C )Xh 1< g, (] <Q (Cq;'cqn))c'h a1<n<2Nmax:
AK {\/gN +Ag \/gN )} (35)1<Q<Q}- 1<q <Q'A and(ﬁqn,ﬁq/n/))(h ,1<n n’ <
2Nmax, 1 < ¢,¢ < Q4. This reqwresO(QNmaxQA +Q7)

It readily follows [25] that “truth” finite element Poisson solutions atl4 N2, (Q4)2+
2Nmax@AQF + (Q7)?2) “N; inner products.”
K K
Kv(u) = An() < K(p) < Kn(p) + Ay (n), - i 6(13?6) In the online stage, given a new parameter valyewe

simply evaluate the sum (39) in terms &f'(x), ©7 (1)

These lower and.in part_icul.ar upper bound; for the SIF are Unn (1) and the pre- computedparameter-mdependent
extremely useful in applications that requingghly accurate inner products. The operation count for this stage is only

(and typically conservative) stress intensity factor evaluatiog(N2(4QA)2 +2NQAQF + (QF)?) — independent of\;.

SUCh. as Non-D_estruc_tlve Eval_uat|_on (NDE), crack grow e do note that for our more complicated (affine) geometric
prediction, or brittle failure applications. mappingsQ* can be quite large; we thus expeetdue to the

(Q*)? scaling— that A, will be more expensive to evaluate
C. Offline/Online Computational Procedure (online) thanGy; we confirm this in the next section.

It remains to develop associated offline-online computa-
tional procedure for the evaluation &f¢, (1) and in particular
en(u), the dual norm of the residual. We begin from ou

reduced basis approximati@y (1) = ZZJL Unn(1)¢n and We present in Table | the error bounds and effectivities for

P. Numerical results

affine decomposition to express the residual as Example 3.3 as a function @¥. The error bound reportedy,
is the maximum of the relative error boundl$, (11)/|Gn, (12)],
f over the same test sampg.;, of Section IV.C. We denote
. _ 1 37 -
R, (Vi ) ZG )Fhial ( )by 7%, the average of the effectivity;$, (1), OvVer Zqes. We
B observe relatively good effectivity: ody; is usually of order
il O (lhxn (1) A N 0(10 — 100).
a 2; Zl i (1) Aniq(Gny € h- It is seen that the computational savings are still very high:
q n

one online evaluation for an output and the associated error
It is clear from linear superposition that we can expressund for N = 30 is about 80-100ms compared to approxi-
én, (1) € Xy, as mately 9-12s for a “truth” solution; our online evaluation (even
oF 04 2N v;/]ith Ierro_r eistimation)his viti" Iabout 92-150 ;ime_s _fasterh tharr:
. 7 A( the classical approach. We also note from the timings that the
én (1) = Z 0y (WCq + Z Z 07 (WU (1) Lan, (38) cost of A, is I[s)%nificantly greater than the cost GE\?: the
reason it that)** = 40 is relatively large for this problem due
where (Cy,V)x,, = Fn,q(V), VW € A, 1 < q¢ < Q7%, to the more complicated (affine) geometric mappings near the
and L, = —An,q(Cn, V), ¥V € Ay, 1 <n < 2N, 1 < hole. As a result, the computational time fa€, (which has
¢ < Q*; note that these problems are simple parametefeminant complexity ordet(4(Q“)2N?)) is much greater
independent Poisson problems (albeit over a somewhat cdivan the computational time fafy (which is O(8N?)) for
plicated enriched space). small N.

qg=1n=1



VI. APPLICATIONS critical stress intensity factods (i) = Kic [19]. With the

In this section, we shall apply our results to a (rather simplgiven data, we obtaim{" = 2.2514 (in.) after 26 iterations,
fracture analysis problem to demonstrate the advantage of ¥{ifich corresponds t@8 reduced basis evaluations using
technique. N = 40 basis. Thanks to oua posteriorierror estimation, by

In the previous sections, we have constructed our redudd¢fsue another two binary searches for the upper bound/lower
basis approximation to estimate stress intensity factors fgpund of the critical crack length [25], we can produce an
the crack-hole problem. Our reduced basis approximati§ior estimation for our calculatioii” € [2.2509,2.2518],
can estimate stress intensity factor and its associated eff§rour reduced basis approximation with = 40 basis. The
for an arbitrary (non-dimensional) paramefere D, where result show that our estimation is very accuratéhe different
D = [0.325,0.625] x [0.1,0.25] x [1.5,2.0]. For a given set of betweerj our resu_lt and_ t.he result using stress intensity factor
(dimensional) “input’/i = (d, R, L, @), we can estimate our calculations by dlrecF finite element method is only of order
stress intensity factok (ji) and its associated errak & (). O(107?), and approximately00 times faster, as shown in the
We shall denotgi; = d as our crack length parameter fronPrévious sections.
now on to avoid any confusion. We then integrate the crack growth rate by a simple Euler

integration scheme to obtain the design lifeNaf, = 15, 694
A. Design analysis (cycles); the integration requires50 stress intensity factor

The fatigue life of a component may be dominant deevaluations. Again, we can safely produce an error estimation
termined by the propagation of crack. In many structuf@r our calculation by constructing two separated integrations
components contain small initial crack that does not cauBased on our critical crack length range that obtained earlier
failure at first, the crack, however, will develop under fatigut25], the results are shown in Figure 3. It is observed that for
loadings until it eventually exceeds the tolerated length afd = 30 basis, the accuracy of our prediction is acceptable.
causes failure. Thus, to ensure the structure component dbek the case we us& = 30 basis, the computation involves
not fracture, the crack must not be grow to a critical siz&)4 stress intensity factor evaluations and only takes less than
during the design life of the component. one minute.

By applying fracture mechanics principles it is possible to
predict the number of cycles spent in growing a crack to

some specified length or to final failure. It is well-known that, 236
assuming constant amplitude load fluctuation, the rate of crack —N=40
growth in a specimen in the “stable growth” material region 234 7&28
is given by Paris’s law [19] L 2% N =10

dji ~ B ol

N = CARG)™, (o) g
where i, is the crack lengthN, is the number of cycles, _‘_§2'28 e
AK (i) is the stress intensity fluctuation corresponds to the & 2.26f Sy S
crack lengthfi; and C,m are Paris’s constants. Paris’'s con- 204} S
stants are different for different materials and are determined LS
by experiments. Assuming constant amplitude load fluctuation %]

Omin, the stress

with constant stress rangds = Gmax — 3
intensity factor fluctuation is given b K (1i1) = AGK (i1 ).
We now define our design scenario. We consider a crack-

2

ol | i i . . . .
14,500 15,000 15,500 16,000 16,500 17,000 17,500 18,000

Number of cycles Nc

hole model corresponds @ = 4.0 (in.), L =80 (in.) and Fig. 3. Final design solution for different number of bagisin the
R = 0.8 (in.). The material isA514 Martensitic steel, of which reduced basis approximation.

Paris’s constants ar€ = 0.66 x 10~® andm = 2.25 and the
critical stress intensity factor 57 = 150 (ksiv/in.) [19]. We
further assume that the minimum initial crack lengthiis=
1.4 (in.), and the constant stress rangeri€ [Gmin, Omax] =

We further assume the design lif§.,, has to be larger, in
particular, N2

20, 000 (cycles), thus the current design is

Ccr

[25,45] (ksi). We now need to estimate the design life of thmadequate. That requires us to modify our design parameter

component and the critical crack length.

by changing the designed constant load stress range. We shall

The analysis will be separated into two steps. We sh&keep the maximum stress value and find the new minimum
first calculate the critical crack lengtfi{* that would cause stress value that meet our new requirement. We again use the
fracture. We then integrate the crack growth rate expressidesign analysis above as a “black box” and pursue another
(40) betweenji; to f$" to obtain the design life of the “outer” binary search, which we shall call our “black box”

component.

design analysis at each iteration. We finally obtained the new

We calculate the critical crack length using a binary searchaximum constant stress rangé = 18.025 (ksi), or the new
algorithm. The critical crack length is defined as the cracitress range ig € [26.975,45.000] (ksi) after 12 iterations,
length that would cause fracture, in particular, the corresponahich only takes less thahl minutes. This demonstrate that
ing stress intensity factor fa@r,,,. will be equal to the material in many-query applications, our method works very efficiently.



B. Crack growth simulations
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and different values ofAG, using N = 15 basis, in Figure 4.
For eachAg value, the simulation takes only around
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