127 research outputs found

    Towards An Accurate Calculation of the Neutralino Relic Density

    Get PDF
    We compute the neutralino relic density in the minimal supersymmetric standard model by using exact expressions for the neutralino annihilation cross section into all tree-level final states, including all contributions and interference terms. We find that several final states may give comparable contributions to the relic density, which illustrates the importance of performing a complete calculation. We compare the exact results with those of the usual expansion method and demonstrate a sizeable discrepancy (of more than 10%) over a significant range of the neutralino mass of up to several tens of GeV which is caused by the presence of resonances and new final-state thresholds. We perform several related checks and comparisons. In particular, we find that the often employed approximate iterative procedure of computing the neutralino freeze-out temperature gives generally very accurate results, except when the expansion method is used near resonances and thresholds.Comment: 23 pages, 4 eps figure

    New Cosmological and Experimental Constraints on the CMSSM

    Get PDF
    We analyze the implications of several recent cosmological and experimental measurements for the mass spectra of the Constrained MSSM (CMSSM). We compute the relic abundance of the neutralino and compare the new cosmologically expected and excluded mass ranges with those ruled out by the final LEP bounds on the lightest chargino and Higgs masses, with those excluded by current experimental values of \br(B\to X_s \gamma), and with those favored by the recent measurement of the anomalous magnetic moment of the muon. We find that for tan\beta\lsim 45 there remains relatively little room for the mass spectra to be consistent with the interplay of the several constraints. On the other hand, at larger values of tanβ$thedecreasingmassofthepseudoscalarHiggsgivesrisetoawideresonanceintheneutralinoWIMPpair−annihilation,whosepositiondependsontheratiooftopandbottomquarkmasses.Asaconsequence,thecosmologicallyexpectedregionsconsistentwithotherconstraintsoftengrowsignificantlyandgenerallyshifttowardssuperpartnermassesinthetan\beta\$ the decreasing mass of the pseudoscalar Higgs gives rise to a wide resonance in the neutralino WIMP pair-annihilation, whose position depends on the ratio of top and bottom quark masses. As a consequence, the cosmologically expected regions consistent with other constraints often grow significantly and generally shift towards superpartner masses in the \tev$ range.Comment: LaTex, 21 pages, 4 PS figures. Version published in JHEP, for updates see hep-ph/020617

    MSSM Forecast for the LHC

    Get PDF
    We perform a forecast of the MSSM with universal soft terms (CMSSM) for the LHC, based on an improved Bayesian analysis. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises from the Bayesian analysis itself when the experimental value of MZM_Z is considered. This allows to scan the whole parameter space, allowing arbitrarily large soft terms. Still the low-energy region is statistically favoured (even before including dark matter or g-2 constraints). Contrary to other studies, the results are almost unaffected by changing the upper limits taken for the soft terms. The results are also remarkable stable when using flat or logarithmic priors, a fact that arises from the larger statistical weight of the low-energy region in both cases. Then we incorporate all the important experimental constrains to the analysis, obtaining a map of the probability density of the MSSM parameter space, i.e. the forecast of the MSSM. Since not all the experimental information is equally robust, we perform separate analyses depending on the group of observables used. When only the most robust ones are used, the favoured region of the parameter space contains a significant portion outside the LHC reach. This effect gets reinforced if the Higgs mass is not close to its present experimental limit and persits when dark matter constraints are included. Only when the g-2 constraint (based on e+e−e^+e^- data) is considered, the preferred region (for μ>0\mu>0) is well inside the LHC scope. We also perform a Bayesian comparison of the positive- and negative-μ\mu possibilities.Comment: 42 pages: added figures and reference

    The health of SUSY after the Higgs discovery and the XENON100 data

    Get PDF
    We analyze the implications for the status and prospects of supersymmetry of the Higgs discovery and the last XENON data. We focus mainly, but not only, on the CMSSM and NUHM models. Using a Bayesian approach we determine the distribution of probability in the parameter space of these scenarios. This shows that, most probably, they are now beyond the LHC reach . This negative chances increase further (at more than 95% c.l.) if one includes dark matter constraints in the analysis, in particular the last XENON100 data. However, the models would be probed completely by XENON1T. The mass of the LSP neutralino gets essentially fixed around 1 TeV. We do not incorporate ad hoc measures of the fine-tuning to penalize unnatural possibilities: such penalization arises automatically from the careful Bayesian analysis itself, and allows to scan the whole parameter space. In this way, we can explain and resolve the apparent discrepancies between the previous results in the literature. Although SUSY has become hard to detect at LHC, this does not necessarily mean that is very fine-tuned. We use Bayesian techniques to show the experimental Higgs mass is at ∼2 σ\sim 2\ \sigma off the CMSSM or NUHM expectation. This is substantial but not dramatic. Although the CMSSM or the NUHM are unlikely to show up at the LHC, they are still interesting and plausible models after the Higgs observation; and, if they are true, the chances of discovering them in future dark matter experiments are quite high

    Curvaton Dynamics

    Full text link
    In contrast to the inflaton's case, the curvature perturbations due to the curvaton field depend strongly on the evolution of the curvaton before its decay. We study in detail the dynamics of the curvaton evolution during and after inflation. We consider that the flatness of the curvaton potential may be affected by supergravity corrections, which introduce an effective mass proportional to the Hubble parameter. We also consider that the curvaton potential may be dominated by a quartic or by a non-renormalizable term. We find analytic solutions for the curvaton's evolution for all these possibilities. In particular, we show that, in all the above cases, the curvaton's density ratio with respect to the background density of the Universe decreases. Therefore, it is necessary that the curvaton decays only after its potential becomes dominated by the quadratic term, which results in (Hubble damped) sinusoidal oscillations. In the case when a non-renormalizable term dominates the potential, we find a possible non-oscillatory attractor solution that threatens to erase the curvature perturbation spectrum. Finally, we study the effects of thermal corrections to the curvaton's potential and show that, if they ever dominate the effective mass, they lead to premature thermalization of the curvaton condensate. To avoid this danger, a stringent bound has to be imposed on the coupling of the curvaton to the thermal bath.Comment: 24 pages, 3 Postscript figures, RevTe

    The case for 100 GeV bino dark matter: A dedicated LHC tri-lepton search

    Get PDF
    Global fit studies performed in the pMSSM and the photon excess signal originating from the Galactic Center seem to suggest compressed electroweak supersymmetric spectra with a ∼\sim100 GeV bino-like dark matter particle. We find that these scenarios are not probed by traditional electroweak supersymmetry searches at the LHC. We propose to extend the ATLAS and CMS electroweak supersymmetry searches with an improved strategy for bino-like dark matter, focusing on chargino plus next-to-lightest neutralino production, with a subsequent decay into a tri-lepton final state. We explore the sensitivity for pMSSM scenarios with Δm=mNLSP−mLSP∼(5−50)\Delta m = m_{\rm NLSP} - m_{\rm LSP} \sim (5 - 50) GeV in the s=14\sqrt{s} = 14 TeV run of the LHC. Counterintuitively, we find that the requirement of low missing transverse energy increases the sensitivity compared to the current ATLAS and CMS searches. With 300 fb−1^{-1} of data we expect the LHC experiments to be able to discover these supersymmetric spectra with mass gaps down to Δm∼9\Delta m \sim 9 GeV for DM masses between 40 and 140 GeV. We stress the importance of a dedicated search strategy that targets precisely these favored pMSSM spectra.Comment: Published in JHE

    LHC and dark matter phenomenology of the NUGHM

    Get PDF
    We present a Bayesian analysis of the NUGHM, a supersymmetric scenario with non-universal gaugino masses and Higgs masses, including all the relevant experimental observables and dark matter constraints. The main merit of the NUGHM is that it essentially includes all the possibilities for dark matter (DM) candidates within the MSSM, since the neutralino and chargino spectrum -and composition- are as free as they can be in the general MSSM. We identify the most probable regions in the NUHGM parameter space, and study the associated phenomenology at the LHC and the prospects for DM direct detection. Requiring that the neutralino makes all of the DM in the Universe, we identify two preferred regions around mχ10=1 TeV,  3 TeVm_{\chi_1^0}= 1\ {\rm TeV},\; 3\ {\rm TeV}, which correspond to the (almost) pure Higgsino and wino case. There exist other marginal regions (e.g. Higgs-funnel), but with much less statistical weight. The prospects for detection at the LHC in this case are quite pessimistic, but future direct detection experiments like LUX and XENON1T, will be able to probe this scenario. In contrast, when allowing other DM components, the prospects for detection at the LHC become more encouraging -- the most promising signals being, beside the production of gluinos and squarks, the production of the heavier chargino and neutralino states, which lead to WZ and same-sign WW final states -- and direct detection remains a complementary, and even more powerful, way to probe the scenario.Comment: The Sommerfeld enhancement has been included in the computation of the relic density and in the discussion of indirect-detection limits. Some references have been adde

    The degenerate gravitino scenario

    Get PDF
    In this work, we explore the "degenerate gravitino" scenario where the mass difference between the gravitino and the lightest MSSM particle is much smaller than the gravitino mass itself. In this case, the energy released in the decay of the next to lightest sypersymmetric particle (NLSP) is reduced. Consequently the cosmological and astrophysical constraints on the gravitino abundance, and hence on the reheating temperature, become softer than in the usual case. On the other hand, such small mass splittings generically imply a much longer lifetime for the NLSP. We find that, in the constrained MSSM (CMSSM), for neutralino LSP or NLSP, reheating temperatures compatible with thermal leptogenesis are reached for small splittings of order 10^{-2} GeV. While for stau NLSP, temperatures of 4x10^9 GeV can be obtained even for splittings of order of tens of GeVs. This "degenerate gravitino" scenario offers a possible way out to the gravitino problem for thermal leptogenesis in supersymmetric theories.Comment: 27 pages, 10 figures and 1 table. Minor typos and references fixed. Matches published version in JCAP

    Quantifying the tension between the Higgs mass and (g-2)_mu in the CMSSM

    Full text link
    Supersymmetry has been often invoqued as the new physics that might reconcile the experimental muon magnetic anomaly, a_mu, with the theoretical prediction (basing the computation of the hadronic contribution on e^+ e^- data). However, in the context of the CMSSM, the required supersymmetric contributions (which grow with decreasing supersymmetric masses) are in potential tension with a possibly large Higgs mass (which requires large stop masses). In the limit of very large m_h supersymmetry gets decoupled, and the CMSSM must show the same discrepancy as the SM with a_mu . But it is much less clear for which size of m_h does the tension start to be unbearable. In this paper, we quantify this tension with the help of Bayesian techniques. We find that for m_h > 125 GeV the maximum level of discrepancy given current data (~ 3.3 sigma) is already achieved. Requiring less than 3 sigma discrepancy, implies m_h < 120 GeV. For a larger Higgs mass we should give up either the CMSSM model or the computation of a_mu based on e^+ e^-; or accept living with such inconsistency
    • …