2,379 research outputs found

    Suppression of weak-localization (and enhancement of noise) by tunnelling in semiclassical chaotic transport

    Full text link
    We add simple tunnelling effects and ray-splitting into the recent trajectory-based semiclassical theory of quantum chaotic transport. We use this to derive the weak-localization correction to conductance and the shot-noise for a quantum chaotic cavity (billiard) coupled to nn leads via tunnel-barriers. We derive results for arbitrary tunnelling rates and arbitrary (positive) Ehrenfest time, τE\tau_{\rm E}. For all Ehrenfest times, we show that the shot-noise is enhanced by the tunnelling, while the weak-localization is suppressed. In the opaque barrier limit (small tunnelling rates with large lead widths, such that Drude conductance remains finite), the weak-localization goes to zero linearly with the tunnelling rate, while the Fano factor of the shot-noise remains finite but becomes independent of the Ehrenfest time. The crossover from RMT behaviour (τE=0\tau_{\rm E}=0) to classical behaviour (τE=∞\tau_{\rm E}=\infty) goes exponentially with the ratio of the Ehrenfest time to the paired-paths survival time. The paired-paths survival time varies between the dwell time (in the transparent barrier limit) and half the dwell time (in the opaque barrier limit). Finally our method enables us to see the physical origin of the suppression of weak-localization; it is due to the fact that tunnel-barriers ``smear'' the coherent-backscattering peak over reflection and transmission modes.Comment: 20 pages (version3: fixed error in sect. VC - results unchanged) - Contents: Tunnelling in semiclassics (3pages), Weak-localization (5pages), Shot-noise (5pages

    Fidelity Decay as an Efficient Indicator of Quantum Chaos

    Full text link
    Recent work has connected the type of fidelity decay in perturbed quantum models to the presence of chaos in the associated classical models. We demonstrate that a system's rate of fidelity decay under repeated perturbations may be measured efficiently on a quantum information processor, and analyze the conditions under which this indicator is a reliable probe of quantum chaos and related statistical properties of the unperturbed system. The type and rate of the decay are not dependent on the eigenvalue statistics of the unperturbed system, but depend on the system's eigenvector statistics in the eigenbasis of the perturbation operator. For random eigenvector statistics the decay is exponential with a rate fixed precisely by the variance of the perturbation's energy spectrum. Hence, even classically regular models can exhibit an exponential fidelity decay under generic quantum perturbations. These results clarify which perturbations can distinguish classically regular and chaotic quantum systems.Comment: 4 pages, 3 figures, LaTeX; published version (revised introduction and discussion

    Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

    Full text link
    We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops. For a typical matrix the time dependence of the form factor looks erratic; only after a local time average over a suitably large time window does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and large time window the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma

    Multifractality and intermediate statistics in quantum maps

    Full text link
    We study multifractal properties of wave functions for a one-parameter family of quantum maps displaying the whole range of spectral statistics intermediate between integrable and chaotic statistics. We perform extensive numerical computations and provide analytical arguments showing that the generalized fractal dimensions are directly related to the parameter of the underlying classical map, and thus to other properties such as spectral statistics. Our results could be relevant for Anderson and quantum Hall transitions, where wave functions also show multifractality.Comment: 4 pages, 4 figure

    Dynamically localized systems: entanglement exponential sensitivity and efficient quantum simulations

    Full text link
    We study the pairwise entanglement present in a quantum computer that simulates a dynamically localized system. We show that the concurrence is exponentially sensitive to changes in the Hamiltonian of the simulated system. Moreover, concurrence is exponentially sensitive to the ``logic'' position of the qubits chosen. These sensitivities could be experimentally checked efficiently by means of quantum simulations with less than ten qubits. We also show that the feasibility of efficient quantum simulations is deeply connected to the dynamical regime of the simulated system.Comment: 5 pages, 6 figure

    Universal features of spin transport and breaking of unitary symmetries

    Get PDF
    When time-reversal symmetry is broken, quantum coherent systems with and without spin rotational symmetry exhibit the same universal behavior in their electric transport properties. We show that spin transport discriminates between these two cases. In systems with large charge conductance, spin transport is essentially insensitive to the breaking of time-reversal symmetry, while in the opposite limit of a single exit transport channel, spin currents vanish identically in the presence of time-reversal symmetry but can be turned on by breaking it with an orbital magnetic field

    Interaction-induced decoherence of atomic Bloch oscillations

    Full text link
    We show that the energy spectrum of the Bose-Hubbard model amended by a static field exhibits Wigner-Dyson level statistics. In itself a characteristic signature of quantum chaos, this induces the irreversible decay of Bloch oscillations of cold, interacting atoms loaded into an optical lattice, and provides a Hamiltonian model for interaction induced decoherence.Comment: revtex4, figure 3 is substituted, small changes in the tex
    • …