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Novel Universality in Spin Transport
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When time-reversal symmetry is broken, quantum coherent systems with and without spin rota-
tional symmetry exhibit the same universal behavior in their electric transport properties. We show
that spin transport discriminates between these two cases. In systems with large charge conduc-
tance, spin transport is essentially insensitive to the breaking of time-reversal symmetry, while in
the opposite limit of a single exit transport channel, spin currents vanish identically in the presence
of time-reversal symmetry but can be turned on by breaking it with an orbital magnetic field.

PACS numbers: 72.25.Dc,73.23.-b,75.76.+j

Introduction. Fifty years ago, Dyson showed that
ensembles of unitary matrices that are invariant under
general symmetry groups reduce to the direct product
of three irreducible ensembles [1]. These three circular
ensembles are labelled by an index β = 1, 2, 4 and are
respectively invariant under the transformations

S → UTSU , orthogonal ensemble, β = 1, (1a)

S → USV , unitary ensemble, β = 2, (1b)

S → WRSW , symplectic ensemble, β = 4, (1c)

where S is an element of the ensemble, U and V are
arbitrary unitary matrices, W is a quaternion unitary
matrix, UT is the transpose of U and WR = σ(y)Wσ(y)

is the dual of W [2]. Here and below, σ(µ), µ = x, y, z is a
Pauli matrix. This classification carries over to electronic
quantum transport, where the three classes are defined by
the symmetry of the system [3]. Systems without time-
reversal symmetry (TRS) have a scattering matrix in the
β = 2 ensemble, while systems with TRS are differenti-
ated by the presence (β = 1) or the absence (β = 4) of
spin rotational symmetry (SRS). When TRS is broken,
breaking SRS doubles the size of the scattering matrix,
but does not generate a new ensemble.
Quantum corrections to electric transport depend on

the symmetry index β, but are independent of the size
N of the scattering matrix (giving the total number of
transport channels from and to the scatterer) for large
N [3]. Recent investigations of spin transport showed
that the spin conductance

T
(µ)
ij = Tr[S†

ijσ
(µ)Sij ] , (2)

constructed from the transmission block Sij of the scat-
tering matrix connecting terminals i and j, also ex-

hibit a character of universality [4–6] in that varT
(µ)
ij =

4Ni(Ni − 1)Nj/N(2N − 1)(2N − 3) for β = 4. Here,
Ni,j gives the number of transport channels between the
system and terminals i, j, and N =

∑

iNi. The spin

conductance fluctuates about zero average, 〈T(µ)
ij 〉 = 0

and the resulting, typically nonzero spin current is gen-
erated by the presence of the SRS breaking field. In the

β = 4 ensemble one usually takes the latter field as spin-
orbit interaction (SOI). In the absence of SOI, one has

T
(µ)
ij ≡ 0. This is the case for β = 1 and, if Dyson’s three-

fold way applies to spin transport, for β = 2. In this
manuscript we demonstrate that spin transport discrimi-
nates between systems with and without SRS even when
TRS is broken. Accordingly, a novel kind of universal-
ity emerges in systems with broken SRS and TRS, with
charge transport properties given by those of the β = 2
ensemble, but with specific spin transport properties.
The latter are similar to those of the β = 4 ensemble at
large N , a finding already reported in Ref. [7] for specific
four-terminal setups, but deviate from it at small N . Our
finding does not invalidate Dyson’s classification– the lat-
ter gives a complete classification of unitary scattering
matrices and unless one introduces chiral or particle-hole
symmetries [8, 9], there is no new ensemble to be found.
Instead our point is that spin-dependent observables de-
fine two sub-ensembles of the β = 2 ensemble, depending
on whether they commute or not with the scattering ma-
trix. In other words, we find that while universality in
charge transport is affected only by the antiunitary sym-
metries, universality in spin transport depends on both
antiunitary and unitary symmetries.
The model. We consider a mesoscopic conductor

connected to any number of external electron reservoirs.
There is no ferromagnetic exchange anywhere in the sys-
tem, nor is there spin accumulation in the reservoirs and
we neglect spin relaxation in the terminals. The mag-
netoelectrically generated spin current due to the pres-
ence of SOI inside the cavity is determined by the spin-
dependent transmission coefficients of Eq. (2). For in-
stance, in the simple case of a two-terminal setup, the
generated spin current in the right lead along the polar-
ization axis µ = x, y, z is given by

I
(µ)
R = (e2V/h)T

(µ)
RL , (3)

with the voltage bias V applied across the sample.
Semiclassical calculation. We first calculate the av-

erage and mesoscopic fluctuations of the spin transmis-
sion coefficients using the semiclassical theory of trans-
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port [10, 11], extended to take spin transport into ac-
count [12, 13]. We write [13]

T
(µ)
ij =

∫

i

dy

∫

j

dy0
∑

γ,γ′

AγA
∗
γ′ei(Sγ−S

γ′)Tr[Uγσ
(µ)U †

γ′ ] .

(4)
The sums run over all trajectories starting at y0 on a
cross-section of the injection lead j and ending at y on
the exit lead i. Trajectories have a stability given by Aγ ,
which includes a prefactor (2πi~)−1/2 as well as a Maslov
index, and Sγ gives the classical action accumulated on
γ, in units of ~. SOI is incorporated in the matrices Uγ .
The average spin conductance has been calculated semi-
classically in Ref. [13]. In the absence of SOI, spins do not
rotate, Uγ = σ(0) is the identity matrix, and one trivially

obtains T
(µ)
ij ≡ 0. The leading-order approximation is to

consider Uγ ∈ SU(2), where SOI rotate the spin of the
electron along unperturbed classical trajectories [12, 14].
In this manuscript, we will use this approximation be-
cause, even though it neglects the geometric correlations
reported in Ref. [13], it is appropriate for our search of
universality. At that level, the average spin conductance

vanishes, 〈T(µ)
ij 〉semicl = 0 [13], which agrees with the ran-

dom matrix theory (RMT) result of Ref. [4].
Having established that the average spin conductance

vanishes regardless of the presence or absence of TRS and
SRS, we next calculate spin conductance fluctuations.
The leading-order diagrams contributing to var[Tµ0

RL]semicl

are shown in Fig. 1. They are the same as those
contributing to the (charge) transmission fluctuations
[substituting σ(µ) → σ(0) in Eq. (2)]. In this case,
Ref. [11] found that contributions c), d) and e) cancel
out, furthermore, contribution b) vanishes upon break-
ing of TRS. This can be achieved via a magnetic flux
piercing the diagram’s loop. From Fig. 1, we see that
contribution b) is the only one that is flux-sensitive,
because the blue (dark) and the red (light) trajecto-
ries accumulate the same flux-phase. From a semi-
classical point of view, this is the origin of the halv-
ing of the universal conductance fluctuations upon TRS
breaking [3]. Extending this calculation to var[Tµ

ij ]semicl,
we obtain that contributions a), b) and c) are multi-
plied by a spin-dependent term Tr[U †

γ1
U †
γ2
σ(µ)Uγ2

Uγ3
]×

Tr[U †
γ3
U †
γ4
σ(µ)Uγ4

Uγ1
], while contributions d) and e) are

multiplied by |Tr[U †
γ1
σ(µ)Uγ2

]|2. All these terms vanish
in the absence of SOI. In the presence of SOI, we evaluate
them by averaging them over a uniform distribution of all
Uγ ’s over the SU(2) group, corresponding to totally bro-
ken SRS. Following the standard procedure of performing
orbital averages and spin averages separately, we obtain
that, when SRS is totally broken, contributions a), b)
and c) acquire a prefactor (〈...〉SU(2) indicates an homo-
geneous average over the SU(2) group)

〈Tr[U †
γ1
U †
γ2
σ(µ)Uγ2

Uγ3
] Tr[U †

γ3
U †
γ4
σ(µ)Uγ4

Uγ1
]〉SU(2) = 0 ,

(5)
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Figure 1: (Color online) Semiclassical diagrams determining
the conductance and spin conductance fluctuations to leading
order in the number N ≫ 1 of transport channels. Blue
(dark) and red (light) trajectories travel in opposite direction
in diagram b), which consequently vanishes in the presence of
a large magnetic flux piercing the loop. All other diagrams
are insensitive to the breaking of time-reversal symmetry.

and thus vanish identically, while contributions d) and e)
are multiplied by

〈|Tr[U †
γ1
σ(µ)Uγ2

]|2〉SU(2) = 1 . (6)

We conclude that the semiclassical contributions to the
spin conductance fluctuations are those with a correlated
encounter at the exit terminal, which in particular has
the consequence that contribution b) vanishes.
We obtain the variance of the spin conductance coeffi-

cients as the sum of contributions d) and e), i.e.

var[T
(µ)
ij ]semicl = NiNjN −NiN

2
j

/

N3 . (7)

The key point is that this result holds both in the ab-
sence and in the presence of TRS, because both relevant
contributions d) and e) are sensitive neither to magnetic
fluxes piercing their loops, nor to orbital magnetic field
effects that do not alter the ergodicity of the classical
trajectories. Thus, Eq. (6) gives the leading-order semi-
classical expression for varGµ for systems without SRS
(with SOI) in both cases of conserved or broken TRS,
as well as in the intermediate regime of partially broken
TRS. Therefore, to leading order in the number N ≫ 1
of transport chanels, spin conductance fluctuations are
insensitive to the breaking of TRS. In the next section,
this result is confirmed using RMT.
Random matrix theory calculation. We next use

the method of Ref. [15] to calculate the RMT average
and fluctuations of the spin conductance. We write [4]

T
(µ)
ij = Tr [Q

(µ)
i SQ

(0)
j S†], (8a)

[Q
(µ)
i ]mη,nν =

{

δmn σ
(µ)
ην , m ∈ i

0, otherwise ,
(8b)

[Q
(µ)
j ]mη,nν =

{

δmn σ
(µ)
ην , m ∈ j,

0, otherwise ,
(8c)
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where m and n are channel indices, η and ν are spin
indices and σ(0) is the 2×2 identity matrix. The trace in
Eq. (8a) is taken over both sets of indices. We find that
the average of the spin transmission vanishes in all cases,

〈T(µ)
ij 〉RMT = 0 . (9)

For the β = 4 ensemble, this result was first obtained in
Ref. [4]. We further obtain

var[T
(µ)
ij ]β=2;SRS = 0 , (10a)

var[T
(µ)
ij ]β=2;✟✟❍❍SRS = 4

NiNjN −NiN
2
j

N(4N2 − 1)
, (10b)

var[T
(µ)
ij ]β=4 = 4

NiNj(N − 1)−NiN
2
j

N(2N − 1)(2N − 3)
. (10c)

Eq. (10c) first appeared in Ref. [4]. We see that Eqs. (7),
(10b) and (10c) all agree in the limit Ni,j ≫ 1, however,
while the semiclassical expression Eq. (7) is valid only in
that limit, Eqs. (10) are exact for any number of channels.
Most interestingly, for a two-terminal setup with Ni =

1, Eq. (10c) gives var[T
(µ)
ij ]β=4 = 0 and thus Gµ = 0,

in agreement with Ref. [16]. This restriction no longer
applies once TRS is broken, as reflected in Eq. (10b) –
breaking TRS can turn spin currents on.
Numerical simulations. We numerically confirm

our findings using the spin kicked rotator model [17]. It
is represented by a 2M × 2M Floquet matrix [18]

Fll′ = (ΠUXU †Π)ll′ , l, l′ = 0, 1, . . . ,M − 1, (11a)

Πll′ = δll′e
−iπ(l+l0)

2/Mσ0, (11b)

Ull′ = M−1/2e−i2πll′/Mσ0, (11c)

Xll′ = δll′e
−i(M/4π)V (2πl/M) . (11d)

The matrix Π represents free ballistic motion, pe-
riodically interrupted by spin-independent and spin-
dependent kicks given by the matrix X , and correspond-
ing to scattering at the boundaries of the quantum dot,
as well as SOI. We choose

V (p) = K cos(p+ θ)σ0 +Kso(σx sin 2p+ σz sin p) . (12)

The map is classically chaotic for kicking strength
K & 7.5, and Kso is related to the SO coupling
time τso (in units of the stroboscopic period) through
τso = 32π2/K2

soM
2 [17]. From (11), we construct the

quasienergy-dependent scattering matrix as

S(ε) = P [e−iε − F(1 − PTP )]−1
FPT , (13)

with P a 2N × 2M projection matrix

Pkα,k′β =

{

δαβ if k′ = l(k),

0 otherwise.
(14)

The l(k) (k = 1, 2, . . . , 2N , labels the modes) give the
position in phase space of the attached leads. The mean
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Figure 2: (Color online) Weak localization corrections to
(top), and variance of (bottom) the charge (empty symbols)
and spin (full symbols) conductance for the two-terminal
kicked rotator of Eqs. (11). Parameters are τD = 10, 20,
K = 40, 60, 80, 90, Kso = 120Ksoc and M = 128, 256, 512.
The dashed lines indicate the RMT predicted crossover from
β = 4 to β = 2 [17]. Our semiclassical prediction of Eq. (7)
is illustrated by the straight black line in the bottom panel.
For all data, N > 10.

dwell time τD is given by τD = M/N . The parame-

ter Kso breaks SRS over a scale Ksoc = 4π
√
2/Mτ

1/2
D

and θ breaks time-reversal symmetry over a scale θc =

4π/KMτ
1/2
D when l0 is finite. In our numerics we fix

l0 = 0.14. When K ≫ 1 and θ/θc ≫ 1, the charge
conductance properties are those of the β = 2 ensem-
ble, while for θ = 0 and Kso/Ksoc ≫ 1 they are those
of the β = 4 ensemble [17]. In our numerics, we fix
Kso/Ksoc = 120 and vary θ to gradually break TRS,
starting from θ = 0. For simplicity, we specify to two-
terminal setups and accordingly calculate the dimension-

less spin conductance defined by Eq. (3) as Gµ = T
(µ)
RL for

µ = z. We checked, but do not show, that numerical re-
sults remain the same if instead we consider µ = x, y.

Fig. 2 first shows data for quantum corrections to the
charge and spin conductance, as TRS is gradually broken.
The top panel shows that weak localization corrections
to the charge conductance are damped by a Lorentzian
∼ [1 + (θ/θc)

2]−1 as predicted by RMT [3] and semi-
classics [10]. There is no weak localization correction
to the average spin conductance, both with and with-
out TRS, in agreement with Ref. [4]. The bottom panel
shows that charge conductance fluctuations are halved
upon TRS, breaking and their behavior once again agrees
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Figure 3: Spin conductance fluctuations for the kicked
rotator with SOI defined in Eq. (11) vs. the rescaled TRS
breaking parameter θ/θc for NR = NL = 1. For θ = 0, one is
in the β = 4 ensemble and TRS forces the spin conductance
to vanish [16]. Breaking TRS results in a finite variance
of the spin conductance. Dashed line: RMT prediction
var[Gµ] = 4/30 for NR = NL = 1 [see Eq. (10b)]. Data
correspond to K = 45, Kso = 384(π/M)2 with M = 128
(red circles), 256 (blue triangles) and 512 (black diamonds).
The curves do not lie on top of one another, because the
rescaling of the horizontal axis with θc assumes NR,L ≫ 1 [17].

well with theoretical predictions. The situation is entirely
different, however, for the spin conductance fluctuations,
which are essentially insensitive to the breaking of TRS.
This is in agreement with our predictions, Eqs. (7) and
(10) for the large number of channels N > 10 considered
in all data in Fig. 2. The new universal behavior corre-
sponding to broken SRS and TRS emerges at larger θ,
where the charge conductance corresponds to the β = 2
Dyson ensemble, while the spin conductance is very close
to those of the β = 4 ensemble.

Fig. 3 best illustrates the new universal behavior.
When the exit lead carries a single transport channel,
TRS requires that the spin conductance vanishes [16], re-
gardless of the presence or absence of SRS. Fig. 3 shows
that, when SRS is broken, breaking TRS turns spin cur-
rents on, whose variance is given by Eq (10b) once TRS
is totally broken. Note that the magnitude of the field
necessary to break TRS for NR,L = 1 becomes smaller
and smaller in the semiclassical limit, M → ∞ as the
dwell time grows in that limit, τD ∼ M .

Conclusions. By direct calculation we have shown
that the spin conductance is an observable that is sensi-
tive to the presence or absence of SRS even when TRS is
broken. Breaking of SRS is necessary to magnetoelectri-
cally generate a spin current, thus to acquire a finite spin
conductance, but the latter is affected by TRS only when
there are very few transport channels. Accordingly, we
conclude that the β = 2 universality class splits into two
different subsets for spin transport. In both cases, charge
transport properties correspond to the β = 2 class, how-
ever, the spin conductance vanishes identically when SRS
is preserved, but exhibits a universal behavior when RS

TRS SRS Charge transport Spin transport

Yes Yes β = 1 β = 1; Gµ ≡ 0

Yes No β = 4 β = 4; Eqs. (9) and (10c)

No Yes β = 2 Gµ ≡ 0

No No β = 2 Eqs. (9) and (10b)

Table I: Universality behavior of charge and spin transport
properties in the four possible cases of broken or unbroken
SRS and TRS. When both symmetries are broken, the spin
transport properties correspond to those of the β = 4 Dyson
ensemble in the limit NR, NL ≫ 1. Deviations from β = 4
are given in Eq. (10) for the spin conductance variance. They
are largest for small number of channels.

is broken, see Eq. (10b). Spin and charge transport uni-
versality classes are related to TRS and SRS in Table. I.
Examples of systems with broken SRS and TRS include
spin-orbit coupled systems under external magnetic fields
that we discussed, but also systems with spin textures
and even spin valves with non-aligned magnetizations.
We thank M. Büttiker for several interesting discus-

sions at various stages of this project.
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