Mutational equations in metric spaces

Abstract

This paper summarizes an extension of differential calculus to a mutational calculus for maps from one metric space to another. The simple idea is to replace half-lines allowing to define difference quotients of maps and their various limits in the case of vector space by ‘transitions’ with which we can also define differential quotients of a map. Their various limits are called ‘mutations’ of a map. Many results of differential calculus and set-valued analysis, including the Inverse Function Theorem, do not really rely on the linear structure and can be adapted to the nonlinear case of metric spaces and exploited. Furthermore, the concept of differential equation can be extended tomutational equation governing the evolution in metric spaces. Basic Theorems as the Nagumo Theorem, the Cauchy-Lipschitz Theorem, the Center Manifold Theorem and the second Lyapunov Method hold true for mutational equations. This work was motivated by evolution equations of ‘tubes’ in ‘visual servoing’ on one hand, mathematical morphology on the other, when the metric spaces are ‘power spaces’. This paper begins by listing some consequences of general theorems concerning ‘mutational equations for tubes’

Similar works

Full text

thumbnail-image

Base de publications de l'université Paris-Dauphine

redirect
Last time updated on 09/07/2019

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.