Design of a Synthetic Collagen-Binding Peptidoglycan that Modulates Collagen Fibrillogenesis

Abstract

The ubiquity of collagen in mammalian tissues, with its host of structural and chemical functions, has motivated its research in many fields, including tissue engineering. The organization of collagen is known to affect cell behavior and the resulting structural integrity of tissues or tissue engineered scaffolds. Of particular interest are proteoglycan (PG) interactions with collagen and their influence on collagen assembly. These natural molecules provide unique chemical and mechanical cues and are known to modulate collagen fibrillogenesis. Research has been limited to PGs extracted and purified from animal sources and has the drawbacks of limited design control and costly purification. Consequently, we have designed a synthetic peptidoglycan based on decorin, a collagen-binding PG. The synthetic peptidoglycan containing a collagen-binding peptide with a single dermatan sulfate side chain specifically binds to collagen, delays fibrillogenesis, and increases collagen gel stiffness as decorin does. This design can be tailored with respect to the peptide sequence and attached glycosaminoglycan chain, offering unique control with relative ease of manufacturing

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0