Activated-Electron Photodetachment Dissociation for the Structural Characterization of Protein Polyanions

Abstract

Multiply deprotonated anions [M − nH]n−of large peptide mellitin, ubiquitin, and β-casein proteins were subjected to laser irradiation at 260 nm in a quadrupole ion trap. For all compounds, the predominant event consecutive to laser irradiation was the detachment of an electron. The subsequent isolation and collisional activation of the oxidized [M − nH](n−1)−• resulted in extensive fragmentation of the peptide backbone. For mellitin peptide, nearly a complete series of c•, z, and a•, x product ions were observed. Applied to proteins, this technique, coined as activated-electron photodetachment dissociation (activated-EPD), achieved much more extensive sequence coverage than regular collision activated dissociation (CAD) on the even-electron components. Furthermore, the activated-EPD spectrum of β-casein displayed phosphorylated fragment ions which suggest that the method is able to preserve part of the labile bonds of post-translational modifications. Activated-EPD is, therefore, a promising complementary technique to other dissociation techniques governed by radicals, i.e., electron capture dissociation (ECD), electron transfer dissociation (ETD), and electron detachment dissociation (EDD), for the structural characterization of large peptides and small proteins

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0