Investigation of Potential Distribution and the Influence of Ion Complexation on Diffusion Potentials at Aqueous−Aqueous Boundaries within a Dual-Stream Microfluidic Structure

Abstract

The occurrence of reactions at boundaries between adjacent miscible but unmixed aqueous streams coflowing in a microfluidic channel structure has been studied by simulation of the diffusion potentials that develop between the two coflowing aqueous electrolyte streams and by measurement of the effects of aqueous ion complexation on diffusion potentials. The microfluidic structure consisted of a Y-shaped microchannel with off-chip electrodes immersed in electrolyte reservoirs connected by capillaries to the Y-microchannel. The time-dependent, one-dimensional Nernst−Planck equation employing the electroneutrality condition was solved numerically to calculate the diffusion potentials established at the boundary between the two coflowing aqueous streams. Under the experimental conditions (channel length and width, flow rate) employed, it was shown that the use of the Henderson equation was appropriate. It was also shown that the cross-channel diffusion potential remained constant from the entrance of the channel to the exit. The influence of cation complexation by a neutral ionophore was investigated by experimentally measured diffusion potentials. It was found that potassium complexation by the cyclic polyether 18-crown-6 altered the experimental diffusion potential, whereas the interaction of sodium or lithium cations with the ionophore did not perturb the diffusion potential. The results are consistent with the literature data for aqueous-phase complexation of these cations by this ionophore. The results of these investigations demonstrate that relatively simple diffusion potential measurements between coflowing streams in microchannels may be used as a basis for study of ion complexation reactions occurring at boundaries between miscible fluids

Similar works

Full text

thumbnail-image

The Francis Crick Institute

redirect
Last time updated on 16/03/2018

This paper was published in The Francis Crick Institute.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

Licence: CC BY-NC 4.0