High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics

Abstract

A high-mobility low-voltage graphene field-effect transistor (FET) array was fabricated on a flexible plastic substrate using high-capacitance natural aluminum oxide as a gate dielectric in a self-aligned device configuration. The high capacitance of the native aluminum oxide and the self-alignment, which minimizes access resistance, yield a high current on/off ratio and an operation voltage below 3 V, along with high electron and hole mobility of 230 and 300 cm<sup>2</sup>/V·s, respectively. Moreover, the native aluminum oxide is resistant to mechanical bending and exhibits self-healing upon electrical breakdown. These results indicate that self-aligned graphene FETs can provide remarkably improved device performance and stability for a range of applications in flexible electronics

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 16/03/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.