Rigid/Flexible Transparent Electronics Based on Separated Carbon Nanotube Thin-Film Transistors and Their Application in Display Electronics

Abstract

Transparent electronics has attracted numerous research efforts in recent years because of its promising commercial impact in a wide variety of areas such as transparent displays. High optical transparency as well as good electrical performance is required for transparent electronics. Preseparated, semiconducting enriched carbon nanotubes are excellent candidates for this purpose due to their excellent mobility, high percentage of semiconducting nanotubes, and room-temperature processing compatibility. Here we report fully transparent transistors based on separated carbon nanotube networks. Using a very thin metal layer together with indium tin oxide as source and drain contacts, excellent electrical performance as well as high transparency (∼82%) has been achieved (350–800 nm). Also, devices on flexible substrates are fabricated, and only a very small variation in electric characteristics is observed during a flexibility test. Furthermore, an organic light-emitting diode control circuit with significant output light intensity modulation has been demonstrated with transparent, separated nanotube thin-film transistors. Our results suggest the promising future of separated carbon nanotube based transparent electronics, which can serve as the critical foundation for next-generation transparent display applications

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 16/03/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.