BBA, a Synthetic Derivative of 23-hydroxybutulinic Acid, Reverses Multidrug Resistance by Inhibiting the Efflux Activity of MRP7 (ABCC10)

Abstract

<div><p>Natural products are frequently used for adjuvant chemotherapy in cancer treatment. 23-<i>O</i>-(1,4'-bipiperidine-1-carbonyl) betulinic acid (BBA) is a synthetic derivative of 23-hydroxybutulinic acid (23-HBA), which is a natural pentacyclic triterpene and the major active constituent of the root of <i>Pulsatilla</i><i>chinensis</i>. We previously reported that BBA could reverse P-glycoprotein (P-gp/ABCB1)-mediated multidrug resistance (MDR). In the present study, we investigated whether BBA has the potential to reverse multidrug resistance protein 7 (MRP7/ABCC10)-mediated MDR. We found that BBA concentration-dependently enhanced the sensitivity of <i>MRP7</i>-transfected HEK293 cells to paclitaxel, docetaxel and vinblastine. Accumulation and efflux experiments demonstrated that BBA increased the intracellular accumulation of [<sup>3</sup>H]-paclitaxel by inhibiting the efflux of [<sup>3</sup>H]-paclitaxel from HEK293/MRP7 cells. In addition, immunoblotting and immunofluorescence analyses indicated no significant alteration of MRP7 protein expression and localization in plasma membranes after treatment with BBA. These results demonstrate that BBA reverses MRP7-mediated MDR through blocking the drug efflux function of MRP7 without affecting the intracellular ATP levels. Our findings suggest that BBA has the potential to be used in combination with conventional chemotherapeutic agents to augment the response to chemotherapy.</p> </div

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.