ZnO/CuO Heterojunction Branched Nanowires for Photoelectrochemical Hydrogen Generation

Abstract

We report a facile and large-scale fabrication of three-dimensional (3D) ZnO/CuO heterojunction branched nanowires (b-NWs) and their application as photocathodes for photoelectrochemical (PEC) solar hydrogen production in a neutral medium. Using simple, cost-effective thermal oxidation and hydrothermal growth methods, ZnO/CuO b-NWs are grown on copper film or mesh substrates with various ZnO and CuO NWs sizes and densities. The ZnO/CuO b-NWs are characterized in detail using high-resolution scanning and transmission electron microscopies exhibiting single-crystalline defect-free b-NWs with smooth and clean surfaces. The correlation between electrode currents and different NWs sizes and densities are studied in which b-NWs with longer and denser CuO NW cores show higher photocathodic current due to enhanced reaction surface area. The ZnO/CuO b-NW photoelectrodes exhibit broadband photoresponse from UV to near IR region, and higher photocathodic current than the ZnO-coated CuO (core/shell) NWs due to improved surface area and enhanced gas evolution. Significant improvement in the photocathodic current is observed when ZnO/CuO b-NWs are grown on copper mesh compared to copper film. The achieved results offer very useful guidelines in designing b-NWs mesh photoelectrodes for high-efficiency, low-cost, and flexible PEC cells using cheap, earth-abundant materials for clean solar hydrogen generation at large scales

Similar works

Full text

thumbnail-image

FigShare

redirect
Last time updated on 12/02/2018

This paper was published in FigShare.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.