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1. Introduction 

The advancement of machine learning model has proved it potential in providing accurate 
forecasts for hydrological data such as rainfall. In many literatures, the development of machine 
learning models for long-term flood forecasting such as monthly water level can be categorized as 
single or hybrid model. Single models have been applied only one machine learning method to 
produce the forecast. Among the widely used single machine learning models are Support Vector 
regression (SVR), Artificial Neural Networks (ANN), Decision Tree (DT), Random Forest (RF), 
and Support Vector Machine (SVM). Hybrid models also often used in long-term flood forecasting. 

Hybrid models have become a growing interest to the researcher in developing model for long-
term flood forecast. Multiple machine learning techniques are integrated, combined, or used in 
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 The advancement of the machine learning model has widely been adopted 
to provide flood forecasts. However, the model must deal with the 
challenges of determining the most important features to be used in flood 
forecasts with high-dimensional non-linear time series when involving data 
from various stations. Decomposition of time-series data such as empirical 
mode decomposition, ensemble empirical mode decomposition, and 
discrete wavelet transform are widely used for optimization of input; 
however, they have been done for single dimension time-series data which 
are unable to determine relationships between data in high dimensional 
time series.   In this study, machine learning models, which are Artificial 
Neural Network (ANN), Adaptive Neuro Fuzzy Inferences System 
(ANFIS), and Long-Short Term Memory (LSTM), are integrated with 
decomposition methods to provide a hybrid model to forecast the monthly 
water level using monthly rainfall data from Kelantan River Basin. To 
effectively select the best rainfall data from the multi-stations that provide 
higher accuracy, these rainfall data are analyzed with entropy called Mutual 
Information that measures the uncertainty of random variables from various 
stations. Mutual information acts as an optimization method to help the 
researcher select the appropriate features to score a higher accuracy for the 
model. The experimental evaluations using Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), and Nash-Sutcliffe Efficiency 
(NSE) proved that the hybrid machine learning model based on the feature 
decomposition and ranked by Mutual Information can increase the accuracy 
of water level forecasting. This outcome will help citizens manage the risk 
of floods.   
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ensembles to create models. Hybrid machine learning models can also be developed by combining 
input optimization into the models that can give forecasts with acceptable performance and 
accuracy. In certain studies, hybrid machine learning is used with more traditional techniques like 
physical approaches to improve the performance of the models. 

In most machine learning model either it is single or hybrid, historical data is the main input 
component. Original historical data may be hard to come by, inaccurate, noisy, or unbalanced, 
making it inappropriate to use it exclusively for forecasting. [1], [2]. The implementation of pre-
processing method has been proven to enhance the forecasting model performance [3]. The choice 
of input is crucial because it affects the forecast model's precision and accuracy [4]. Several pre-
processing methods can be found in the literature and the most frequent use in recent studies are 
Empirical Wavelet Decomposition (EMD), Ensemble Empirical Wavelet Decomposition (EEMD), 
and Wavelet Transform (WT). 

In a wavelet decomposition like Discrete Wavelet Transform (DWT), time series data were 
decomposed into a shifted and scaled version of a wavelet known as a mother wavelet [5]. It is a 
convenient method that able to analyses time-series variation that gives information on time and 
frequency domains of signal. DWT is more efficient than calculating wavelet coefficient at each 
possible scale in the continuous wavelet transform that takes more of process work [6]. Although 
DWT is a great pre-processing technique, it is sensitive in the selection of mother wavelet [7], [8]. 
The decomposition technique of DWT has been proved to improved forecast performance [5], [6], 
[9], However, in certain instances, the decomposition of this time-series data did not result in any 
appreciable differences in the forecasting precision. This is because wavelet analysis is based on the 
convolution of the signal and the filter [10]. The drawback of DWT is the occurrence of shift 
variance in which may cause by the down sampling [11]. 

Non-linear signal is decomposed into intrinsic mode functions (IMFs) and one residual 
component using the Empirical Mode Decomposition (EMD) [12]. Non-stationary and non-linear 
time series data can be decomposed using EMD [13]. EMD is superior to DWT since it is fully 
self-adaptive and doesn't require a predetermined basis function. The disadvantage of EMD is that 
mode mixing occurs frequently [4]. EEMD decomposing technique adds finite noise to the signal 
that can address the mode mixing problem of EMD [3]. The use of EEMD has effectively improved 
the forecasting model [14]. It is also found that the use of different length time series data in 
EEMD could produce various performances of the model in which the decomposition and model 
must be updated whenever new information is added [4].  

Decomposition of input in the pre-processing phase of any modelling has a significant role in 
helping to select the most dominant input for the model. Pre-processing the input has the 
advantages in producing better forecast accuracy [15]. In many cases, decomposition of input is 
done within the single dimension of data, while when multi-dimensional data is considered, it is 
very challenging to determine which of these data are the most suitable in producing a higher 
forecast accuracy. Decomposing single dimension time-series data will only optimize specific input. 
When multi-dimensional data is considered, it is very time consuming and hard to determine which 
of these data can produce a high accuracy forecast. In this case, it is crucial to analyze the relationship 
between these data to accommodate the best combination of data to be used in the machine learning 
model.  As time series that consist of high dimensional data can be inefficient to be use in machine 
learning [16], it is important that the best input are selected to provide higher accuracy. 

This study aims to improve the accuracy of a hybrid machine learning model to forecast monthly 
water level based on decomposition of multi-dimensional input using Empirical Model 
Decomposition (EMD), Ensemble Empirical Model Decomposition (EEMD), and Discrete 
Wavelet Transform (DWT). These inputs are analyzed on their relationship and ranked using 
entropy called Mutual Information to find the optimize input. Mutual Information quantity the 
information shared between two random variables in which it expresses how the value of one 
variable aids in forecasting the value of the other. The performances of these three models then 
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were assessed in terms of accuracy. An accurate monthly water level forecasting is crucial to protect 
the downstream cities and communities from the flood hazard, thus minimizing any possible loss 
and damage perceived by flood victims. Monthly water level can be a great indication to the 
authorities in managing the risk of flood and helping people in the evacuation process as an early 
warning can be assigned and disseminate to the citizen. 

2. Method 

2.1. Areas of Study and Dataset 

Monthly average rainfall data from eight rainfall stations are gathered from Kelantan River Basin. 
Data are provided by the Department of Irrigation and Drainage Malaysia, an agency that responsible in 
managing the water resources in Malaysia. These eight stations are located along two main tributaries of 
Sungai Kelantan which are Lebir River and Galas River. Six of the eight stations are along Lebir River 
which are Gunung Gagau, Kuala Koh, Kampung Aring, Kampung Lalok, Kampung Tualang and Kuala 
Krai. Meanwhile the rest are along the Galas River which is Dabong and Limau Kasturi. These stations 
are located at the upper stream and the water level station of Kuala Krai is at the downstream. The 
forecasting model will analyze these data to forecast monthly water level in the Kuala Krai water level 
station.  

Dataset used in this study is from April 2011 to November for all the stations. The data for each 
station is divided into two datasets. First is the training dataset which covers 75% of the whole data and 
the rest 25% is for the test datasets. 

2.2. Feature Decomposition and Optimization Model Development 

Input data contribute on how machine learning model behave. In this study, input is optimized with 
a proposed method based on decomposition of signals and entropy called Mutual Information. 
Decomposition of time-series data has been widely used as the pre-processing method of the original 
data. In many cases, decomposition methods have been used in single dimension data such as water level 
[17], runoff [18], and streamflow [15], but the effect of this method is lacked to be known when these 
decomposed single-series data is being part of the features of a high dimensional dataset. The effect of 
such conditions is an important aspect to be studied as it provides the machine learning models with 
the most valuable features which can determine the model performance. Entropy is firstly introduced by 
[19] that measures the uncertainty or variability in random variables. The entropy has been defined as : 

𝐻(𝑋) = 𝐻(𝑃) =  − ∑ 𝑝(𝑥𝑖)log [(𝑝(𝑥𝑖)]𝑁
𝑖=1    () 

where 𝐻(𝑋) is the entropy function for random variable 𝑋, 𝑁 is the size of the time-series data, 
𝑝(𝑥) is the probability density function (PDF) for variable 𝑖, and log [] is the log-part function for 
the PDF. In hydrological forecasting, entropy has been adopted to produce a robust and reliable 
flood forecasting at the upper Yangtze River was [20].  

Data from eight rainfall stations are decomposed using different decomposition methods namely 
Empirical Mode Decomposition (EMD), Ensemble Mode Decomposition (EEMD), and Discrete 
Wavelet Transform (DWT). Decomposing such inputs will give in-depth knowledge about the data in 
term of time and space. These methods are selected due to their high adaptive nature and inherent to 
the characteristic of the non-linear data. They allowed the extraction of useful features from non-
stationary, non-linear data, allowing machine learning algorithms to efficiently learn and represent the 
complex patterns and dynamics present in the data. Empirical Mode Decomposition (EMD) 
decomposed signal into various components called Intrinsic Mode Functions (IMF) and residual that 
preserve the time-spectrum [12]. EMD decomposed the original signal by using shifting process. As 
hydrological data such as rainfall or runoff are non-linear and non-stationary, EMD can be used to 
decompose the original data. The applications of EMD in hydrological forecast can be found in several 
studies such as in [21] that used it with Encoder Decoder LSTM model to forecast monthly streamflow 
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for the Yangtze River. EMD also has proven to increase the performance of hydrological forecasting 
when coupled with Seasonal-Trend decomposition using Loess (STL) and ANN [13].  

Ensemble Empirical Mode Decomposition (EEMD) is a decomposition method that address the 
drawbacks of mode mixing problem in EMD by adding finite noise to the signals. Mode mixing problems 
have the potential to generate a decomposed signal that unable to represent the original characteristics 
of the data [13]. As a result, by include noise in the signals, a consistent reference backdrop of the time-
frequency space is created, allowing varied signal scales to be automatically projected onto the proper 
reference scales. The integration of EEMD with Artificial Neural Network (ANN) with machine learning 
model such as to forecast runoff has indicated that it can improve the accuracy during the flood season 
[4].  

Discrete Wavelet Transform (DWT) is a method in which the signal is discretely sampled. DWT 
decomposed time series data into a shifted and scaled version of a wavelet called mother wavelet [5]. It 
provides the information for both time and frequency domain of nonstationary signal [22]. As 
hydrological data might be recorded at a discrete time rather than in continuous manner, DWT is a 
suitable method to be used in pre-processing of this kind of data [23]. The decomposition level of DWT 
is a subjective matter and there is no direct method to determine it [24]. As decomposition level can 
determine model performance, the optimal level must be selected. An empirical equation (2) adapted by 
[25] has been used in this study to determine the decomposition level.  

𝐿 = 𝑖𝑛𝑡[log(𝑁)]   () 

where 𝐿 is the level of decomposition, 𝑁 is the length of time-series data, and 𝑖𝑛𝑡 [] is the integer-part 
function. The  Daubechies wavelet is used as the mother wavelet with three vanishing moments (db3) 
which provided the  high vanishing moments for given support width [22]. Total number of IMF and 
coefficient from the decomposition method for all rainfall stations are shown in Table 1. 

Table 1.  Total IMF and coefficient for each decomposition method 

 
Stations 

 Decomposition Method  

EMD EEMD DWT 

Total IMFs Total IMFs Total Coefficient 

Gunung Gagau (GG) IMF1 – IMF5 IMF1 – IMF6 cA2, cD2, cD1 

Kuala Koh (KK) IMF1 – IMF6 IMF1 – IMF6 cA2, cD2, cD1 

Kampung Aring (KA) IMF1 – IMF5 IMF1 – IMF6 cA2, cD2, cD1 

Tualang (T) IMF1 – IMF5 IMF1 – IMF6 cA2, cD2, cD1 

Kampung Lalok (KL) IMF1 – IMF5 IMF1 – IMF6 cA2, cD2, cD1 

Kuala Krai (KKr) IMF1 – IMF5 IMF1 – IMF5 cA2, cD2, cD1 

Limau Kasturi (LK) IMF1 – IMF6 IMF1 – IMF6 cA2, cD2, cD1 

Dabong (D) IMF1 – IMF6 IMF1 – IMF6 cA2, cD2, cD1 
 

EMD and EEMD provided each of the time series data IMFs and residual components in which they 
may be strong or weakly correlated with the original data. To select the most correlated set of data, 
Spearman correlation coefficient is used. Spearman correlation method is used as it is suitable for time-
series data that is not normally distributed [26]. In DWT, Spearman correlation coefficient has also been 
used to select the most correlated sub time series with the original data between the approximation 
coefficient (cA) and the details coefficient (cD) [23], [27]. Spearman cross-correlation function (p-value) 
can evaluate the level of relationship between the decomposed data and original data [23], [26], [27]. 
The function can be defined in the below equation: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1 −
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
   () 
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where 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is the Spearman correlation coefficient, 𝑑𝑖 is the ranking difference of each 
observation, and 𝑛 is the number of observations. 

Table 2 presents the selected IMF and coefficients with their respective 𝑝 − 𝑣𝑎𝑙𝑢𝑒 of every station. 
For example, IMF4 and cA2 produce the highest 𝑝 − 𝑣𝑎𝑙𝑢𝑒 using EMD, EEMD and DWT respectively 
for Gunung Gagau. 

Table 2.  Spearman correlation coefficient value for selected IMF and coefficient 

Stations 

Decomposition Method 

EMD EEMD DWT 

Selected IMF p-value Selected IMF p-value Selected Coefficient p-value 

Gunung Gagau (GG) IMF4 0.573 IMF4 0.540 cA2 0.753 

Kuala Koh (KK) IMF2 0.543 IMF2 0.449 cA2 0.664 

Kampung Aring (KA) IMF1 0.674 IMF1 0.653 cA2 0.552 

Tualang (T) IMF2 0.580 IMF2 0.520 cA2 0.642 

Kampung Lalok (KL) IMF1 0.697 IMF1 0.633 cD1 0.581 

Kuala Krai (KKR) IMF1 0.568 IMF1 0.537 cA2 0.612 

Limau Kasturi (LK) IMF3 0.463 IMF3 0.524 cA2 0.711 

Dabong (D) IMF1 0.630 IMF1 0.637 cA2 0.626 

 

There is a representative feature (selected IMF and coefficient) for every decomposition method from 
each station. There are 8 features in total for each decomposition method to be used in forecasting water 
level of Kuala Krai. This process will generate optimized datasets with the structure as in Fig. 1. Feature 
1 to Feature 8 are the selected sub time series for each of the rainfall stations. 

 

Fig. 1. Dataset structure for each decomposition method 

Although the highest correlated features were selected from the decomposed data, uncertainty still 
can occur in forecasting due to the variability of data. Therefore, the relationship between these data 
must be established to select only the features that can provide higher accuracy to be used in the model. 
This kind of relationship can be analyzed using entropy called Mutual Information. It measured the 
dependency between random variables and measuring the dispersion of information. Additionally, it 
managed a robust nonlinear relationship between input and output that might be used to determine 
superior input in a machine learning model with nonlinear time-series. Mutual Information between 
two random variables A and B can be defined as [28]: 

𝑀𝐼(𝐴, 𝐵) = 𝐻 (𝐴) + 𝐻(𝐵) − 𝐻 (𝐴, 𝐵)   () 

where 𝐻(𝐴) and 𝐻(𝐵) are the entropy of 𝐴 and 𝐵, and the joint entropy of 𝐻(𝐴, 𝐵) is: 

𝐻(𝐴, 𝐵) = − ∑ ∑ (𝑎, 𝑏)𝑙𝑜𝑔𝑃𝐴𝐵(𝑎, 𝑏)𝑏𝜖𝐵𝑃𝐴𝐵𝑎𝜖𝐴    () 

where 𝑎 and 𝑏 is the specific value of 𝐴 and 𝐵, respectively 𝑝(𝑎, 𝑏) is the joint probability of these values 
occurring together. 

Table 3 presents the value of Mutual Information of each station and its rank from more to less 
dominant features. It shows that the most dominant features of EMD, EEMD and DWT are coming 
from Kuala Koh station and Gunung Gagau station, respectively. This has given us the ability to select 
the optimized datasets which consist of the most dominant features to be used in the machine learning 
model: 
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Table 3.  Mutual Information rank of optimization methods 

Optimization Method More to Less Dominant 

Opt1* 

MI value 

KK T KL GG KKR D LK KA 

0.2996 0.2095 0.1648 0.1374 0.1167 0.0848 0.0552 0 
Opt2 ** 

MI value 

GG KKR KL KK D LK T KA 

0.3467 0.2632 0.232 0.2029 0.1592 0.1476 0.1388 0.0295 
Opt3 *** 

MI value 

GG KKR D T KK KA KL LK 

0.4191 0.3654 0.2857 0.2559 0.1641 0.1158 0.09 0.0587 
* Opt1 = optimization with integration of EMD decomposition with entropy, ** Opt2 = optimization with integration of EEMD 

decomposition with entropy and *** Opt3 = optimization with integration of DWT decomposition with entropy 

 

To forecast the monthly water level of Kuala Krai, these optimized datasets were the input for the 
machine learning models. Hybrid machine learning models were introduced by integrating the 
decomposition and optimization method with three machine learning model namely Artificial Neural 
Network (ANN), Adaptive Neuro Fuzzy Inferences System (ANFIS), and Long-Short Term Memory 
(LSTM). These three type of machine learning models have been chosen as they have proved their 
ability to produce accurate forecast using non-linear and non-stationary hydrological time series 
data [29]–[31]. Fig. 2 present the details flow of the model development. 

 

Fig. 2. Flow of the hybrid model development with optimization method 

Artificial Neural Networks (ANNs) are modelled after the structure and operation of the human 
brain. ANNs are made up of layers of neurons, which are interconnected nodes [32]. ANNs can minimize 
the discrepancy between expected and actual outputs as they learn from data. After being trained, ANNs 
can categorize or predict new inputs using the data's discovered patterns. ANFIS works by using neural 
networks and fuzzy logic [33]. It uses a learning algorithm that modifies these rules' parameters in 
accordance with training data. ANFIS uses a forward-pass technique, where membership function 
degrees are computed, and input values are fuzzified. The final output is produced by aggregating the 
findings after these degrees have been propagated through the fuzzy inference procedures. LSTM (Long 
Short-Term Memory) were developed to address the vanishing gradient problem and identify long-term 
dependencies in sequential data [2]. LSTM uses memory cells and gating mechanisms. It has input, 
forget, and output gates that control the information flow. Due to its good retention and use of pertinent 
information over extended sequences, LSTM is well suited for sequential data processing tasks. 
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All model performance in this study is evaluated using statistical method often known as “goodness 
of fit” [34]. To comprehensively assess the model, the forecast result is evaluated against the original 
value using three measurements, Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and 
Nash-Sutcliffe Efficiency (NSE) as in (6), (7), and (8). 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑ = 1(𝑦𝑖 − 𝑦̂)2𝑁

𝑖    () 

𝑀𝐴𝐸 =
1

𝑁
 ∑ = 1|𝑦𝑖 − 𝑦̂|𝑁

𝑖     () 

where 𝑦𝑖 is the original value at period 𝑖, 𝑦̂𝑖 is the forecasted value at the period of 𝑖, and 𝑁 denotes the 
number of the sample. 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑚

𝑡𝑇
𝑡=1 −𝑄𝑜

𝑡)2

∑ (𝑄𝑜
𝑡𝑇

𝑡=1 −𝑄𝑜̅̅ ̅̅ )2    () 

where 𝑄0 is the original value, and  𝑄𝑚 is the forecasted value. 𝑄𝑜
𝑡  is the original value at time 𝑡. The 

higher value of NSE indicate more powerful forecast model. 

3. Results and Discussion 

The purpose of the hybrid model is to forecast water level at Kuala Krai station in the downstream 
by using rainfall data from the various stations located along the river at the upper stream. As Lebir river 
and Galas River are the main tributaries of Sungai Kelantan, it is important to analyze the effect of the 
rainfall that occurred in stations alongside these two rivers towards the Kuala Krai water level. Each 
model is trained with 75% of the dataset and test with 25% of the dataset. The performance of the 
model then is assessed by using statistical methods of RMSE, MAE and, NSE. To get the best 
performance for every model, the models are run repeatedly by using every feature in the rank with the 
lowest rank is eliminate in each cycle. The cycle stopped after ranked one only feature is run through 
the models. The best performance results for all these models are presented in Table 4 with their 
respective number of dominant features. To ease the identification of the hybrid model, each model is 
labelled by its machine learning type and the optimization method. For example, ANN-Opt1 represent 
the ANN model that used optimization with EMD decomposition, while Opt2 is optimization with 
EEMD decomposition and Opt3 is optimization with DWT decomposition. The machine learning 
models is compared with each other, and comparison is extended with the model that used original data 
without optimization.  

Table 4.  Performance measurement of hybrid model with optimization 

Model RMSE Number of 
Features 

MAE Number of Features NSE Number of 
Features 

ANN-Original Data 1.5630 8 1.1560 8 -0.1319 8 

ANN-Opt1 1.2862 6 0.9524 6 0.2335 6 

ANN-Opt2 1.3478 8 1.0288 8 0.1584 8 

ANN-Opt3 1.1302 7 0.9181 7 0.4082 7 

LSTM-Original Data 2.0334 8 1.4090 8 -0.9158 8 

LSTM-Opt1 1.0447 4 0.7519 4 0.4943 4 

LSTM-Opt2 1.2259 4 0.8253 3 0.3037 4 

LSTM-Opt3 0.9356 3 0.6742 3 0.5945 3 

ANFIS-Original Data 3.3771 8 1.7927 8 -0.0066 8 

ANFIS-Opt1 1.3058 1 0.8688 1 0.1850 4 

ANFIS-Opt2 1.2184 4 0.7769 4 -0.2919 5 

ANFIS-Opt3 1.0046 3 0.6885 3 -0.1619 6 
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The performance measurement trend is presented in Fig. 3 for RMSE, Fig. 4 for MAE, and Fig. 5 
for NSE. Fig. 6 presents the comparison of forecast data and observed data for the testing datasets of 
LSTM-Opt3 model that recorded the lowest of RMSE and MAE, and highest performance of NSE. 

 

Fig. 3. Lowest to Highest RMSE Value for All Models 

 

Fig. 4. Lowest to Highest MAE Value for All Models 

 

Fig. 5. Highest to Lowest NSE Value for All Models 
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Fig. 6. Forecasted Water Level Compared with Observed Water Level for LSTM-Opt3 Model 

The performance measurement shows that most of the hybrid model has achieved better performance 
in terms of RMSE, NSE, and MAE than the model with original data. The best performance is achieved 
by LSTM-Opt3 model when it recorded the lowest value in RMSE and MAE while the highest value 
in NSE. Lowest value of RMSE and MAE is an indication of improved forecast in which minimal error 
are produced compared to another model.  

Although LSTM-Opt3 model has achieved a great result, however according to the forecast pattern 
in Fig. 6, at some points of the data where a major sudden spike occurred in original data, the forecast 
model seems not to behave following the trend. This may be due to the model might not have enough 
prior knowledge to correctly forecast the subsequent water levels whenever sudden changes happened in 
the input data, such as a major increase in rainfall intensity. Spearman coefficient correlation is conducted 
between the observed value and forecasted value for the LSTM-Opt3 model which resulted the value of 
0.789 that indicates a positive and strong relationship of water level towards the rainfall trends. For flood 
forecast models to work, the connection between water level and rainfall must be positive. When rain 
falls heavily or lasts a long time, there is more water runoff, which raises the water levels in rivers and 
streams. Forecast model can anticipate flood events by examining past patterns of precipitation and the 
responses of the river levels. This knowledge is crucial for delivering prompt alerts, putting emergency 
action plans into action, and reducing possible flooding damage. 

In the case of hybrid model using ANFIS, it is revealed that all hybrid model using ANFIS has 
achieved the lowest value in RMSE and MAE than the model with original data. In contrary, only 
ANFIS-Opt2 managed to perform better than the ANFIS model with original data in term of NSE. 
Although the model has less energy, it can still provide a better accuracy. All hybrid model based on 
ANN has outperformed the ANN model with original data. The improvement of the model’s accuracy 
is varied among the models. Even so, the real and significant improvement can be found in ANFIS based 
model in which the value of RMSE and MAE are greatly reduced. Hybrid model of ANN, ANFIS and 
LSTM with optimization has proven to produce better modelling performance. This study also indicates 
that the best performance of RMSE, NSE, and MAE are achieved when around 38%-40% of features 
with the highest rank are used in the machine learning model. The model has utilized the advantage of 
reducing the dimension dataset produce by optimization method to produce a more accurate result. 

4. Conclusion 

In this study, hybrid models are developed by combining machine learning model with optimizations 
method. The optimizations method is based on integration of decomposition signals with entropy called 
Mutual Information. They are not only producing datasets that have the strongest relationship with the 
original data but also can reduces the dimension of features used in the models. The adaptation of the 
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optimization methods in machine learning model has demonstrated a significant improvement in the 
forecast performance for all the developed hybrid models. Machine learning models LSTM-Opt3 has 
shown an impressive result of being the best performance model. It reduced the RMSE value by 54%, 
MAE value by 52% and increased the NSE value by more than 100% compared to the original data. 
The advantage of the proposed hybrid model is that by integrating the optimization methods with 
machine learning, it will provide the researcher or authorities a dominant input to the forecast model 
and improving its performance. It will also provide an early warning to the citizen and relevant agencies 
that can help them in triggering any action such evacuation plan to minimize the impact of the flood to 
lives, infrastructure, and crops. Although the proposed hybrid model has shown significant result in 
term of the forecast performance, but it can be difficult to guarantee that a hybrid model performs 
effectively across various datasets, contexts, or time periods. When used in new situations, the hybrid 
models may be sensitive to variations in data distribution and need to be modified or retrain. For future 
research, it is valuable to investigate how a hybrid approach might be used to improve flood forecasting 
in areas with a lack of data and observations or incomplete data that make it difficult to use conventional 
modeling techniques. 
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