Journal of Virtual Reality and Broadcasting
Not a member yet
    119 research outputs found

    Precise Near-to-Head Acoustics with Binaural Synthesis

    Get PDF
    For enhanced immersion into a virtual scene more than just the visual sense should be addressed by a Virtual Reality system. Additional auditory stimulation appears to have much potential, as it realizes a multisensory system. This is especially useful when the user does not have to wear any additional hardware, e.g., headphones. Creating a virtual sound scene with spatially distributed sources requires a technique for adding spatial cues to audio signals and an appropriate reproduction. In this paper we present a real-time audio rendering system that combines dynamic crosstalk cancellation and multi-track binaural synthesis for virtual acoustical imaging. This provides the possibility of simulating spatially distributed sources and, in addition to that, near-to-head sources for a freely moving listener in room-mounted virtual environments without using any headphones. A special focus will be put on near-to-head acoustics, and requirements in respect of the head-related transfer function databases are discussed

    Lag Camera: A Moving Multi-Camera Array for Scene-Acquisition

    Get PDF
    Many applications, such as telepresence, virtual reality, and interactive walkthroughs, require a three-dimensional(3D)model of real-world environments. Methods, such as lightfields, geometric reconstruction and computer vision use cameras to acquire visual samples of the environment and construct a model. Unfortunately, obtaining models of real-world locations is a challenging task. In particular, important environments are often actively in use, containing moving objects, such as people entering and leaving the scene. The methods previously listed have difficulty in capturing the color and structure of the environment while in the presence of moving and temporary occluders. We describe a class of cameras called lag cameras. The main concept is to generalize a camera to take samples over space and time. Such a camera, can easily and interactively detect moving objects while continuously moving through the environment. Moreover, since both the lag camera and occluder are moving, the scene behind the occluder is captured by the lag camera even from viewpoints where the occluder lies in between the lag camera and the hidden scene. We demonstrate an implementation of a lag camera, complete with analysis and captured environments

    An Architecture for End-User TV Content Enrichment

    Get PDF
    This paper proposes an extension to the televisionwatching paradigm that permits an end-user to enrich broadcast content. Examples of this enriched content are: virtual edits that allow the order of presentation within the content to be changed or that allow the content to be subsetted; conditional text, graphic or video objects that can be placed to appear within content and triggered by viewer interaction; additional navigation links that can be added to structure how other users view the base content object. The enriched content can be viewed directly within the context of the TV viewing experience. It may also be shared with other users within a distributed peer group. Our architecture is based on a model that allows the original content to remain unaltered, and which respects DRM restrictions on content reuse. The fundamental approach we use is to define an intermediate content enhancement layer that is based on the W3C’s SMIL language. Using a pen-based enhancement interface, end-users can manipulate content that is saved in a home PDR setting. This paper describes our architecture and it provides several examples of how our system handles content enhancement. We also describe a reference implementation for creating and viewing enhancements

    MHP Oriented Interactive Augmented Reality System for Sports Broadcasting Environments

    Get PDF
    Television and movie images have been altered ever since it was technically possible. Nowadays embedding advertisements, or incorporating text and graphics in TV scenes, are common practice, but they can not be considered as integrated part of the scene. The introduction of new services for interactive augmented television is discussed in this paper. We analyse the main aspects related with the whole chain of augmented reality production. Interactivity is one of the most important added values of the digital television: This paper aims to break the model where all TV viewers receive the same final image. Thus, we introduce and discuss the new concept of interactive augmented television, i. e. real time composition of video and computer graphics - e.g. a real scene and freely selectable images or spatial rendered objects - edited and customized by the end user within the context of the user\u27s set top box and TV receiver

    Automatic Data Normalization and Parameterization for Optical Motion Tracking

    Get PDF
    Methods for optical motion capture often require timeconsuming manual processing before the data can be used for subsequent tasks such as retargeting or character animation. These processing steps restrict the applicability of motion capturing especially for dynamic VR-environments with real time requirements. To solve these problems, we present two additional, fast and automatic processing stages based on our motion capture pipeline presented in [HSK05]. A normalization step aligns the recorded coordinate systems with the skeleton structure to yield a common and intuitive data basis across different recording sessions. A second step computes a parameterization based on automatically extracted main movement axes to generate a compact motion description. Our method does not restrict the placement of marker bodies nor the recording setup, and only requires a short calibration phase

    Digital Illumination for Augmented Studios

    Get PDF
    Virtual studio technology plays an important role for modern television productions. Blue-screen matting is a common technique for integrating real actors or moderators into computer generated sceneries. Augmented reality offers the possibility to mix real and virtual in a more general context. This article proposes a new technological approach for combining real studio content with computergenerated information. Digital light projection allows a controlled spatial, temporal, chrominance and luminance modulation of illumination – opening new possibilities for TV studios

    Playing with the Real World

    Get PDF
    In this paper we provide a framework that enables the rapid development of applications using non-standard input devices. Flash is chosen as programming language since it can be used for quickly assembling applications. We overcome the difficulties of Flash to access external devices by introducing a very generic concept: The state information generated by input devices is transferred to a PC where a program collects them, interprets them and makes them available on a web server. Application developers can now integrate a Flash component that accesses the data stored in XML format and directly use it in their application

    Interactive Ray Tracing for Virtual TV Studio Applications

    Get PDF
    In the last years, the well known ray tracing algorithm gained new popularity with the introduction of interactive ray tracing methods. The high modularity and the ability to produce highly realistic images make ray tracing an attractive alternative to raster graphics hardware. Interactive ray tracing also proved its potential in the field of Mixed Reality rendering and provides novel methods for seamless integration of real and virtual content. Actor insertion methods, a subdomain of Mixed Reality and closely related to virtual television studio techniques, can use ray tracing for achieving high output quality in conjunction with appropriate visual cues like shadows and reflections at interactive frame rates. In this paper, we show how interactive ray tracing techniques can provide new ways of implementing virtual studio applications

    ARTHUR: A Collaborative Augmented Environment for Architectural Design and Urban Planning

    Get PDF
    oai:jvrb.ojs.hbz-nrw.de:article/1Projects in the area of architectural design and urban planning typically engage several architects as well as experts from other professions. While the design and review meetings thus often involve a large number of cooperating participants, the actual design is still done by the individuals in the time in between those meetings using desktop PCs and CAD applications. A real collaborative approach to architectural design and urban planning is often limited to early paper-based sketches.In order to overcome these limitations, we designed and realized the ARTHUR system, an Augmented Reality (AR) enhanced round table to support complex design and planning decisions for architects. WhileAR has been applied to this area earlier, our approach does not try to replace the use of CAD systems but rather integrates them seamlessly into the collaborative AR environment. The approach is enhanced by intuitiveinteraction mechanisms that can be easily con-figured for different application scenarios

    114

    full texts

    119

    metadata records
    Updated in last 30 days.
    Journal of Virtual Reality and Broadcasting is based in Germany
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇