245657 research outputs found
Sort by
2020 NASA Technology Taxonomy
This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world
Jig Twist Optimization of Mach 0.745 Transonic Truss-Braced Wing Aircraft and High-Fidelity CFD Validation
This paper presents a jig twist optimization study of Mach 0.745 Transonic Truss-Braced Wing (TTBW) aircraft using an in-house developed aero-structural analysis solver VSPAERO coupled to BEAM3D. A vortex-lattice model of the TTBW model is developed, and a transonic and viscous flow correction method is implemented in the VSPAERO model to account for transonic and viscous flow effects. A correction method for the wing-strut interference aerodynamics is developed and applied to the VSPAERO solver. Also, a structural dynamic finite-element model of the TTBW aircraft is developed. This finite-element model includes the geometric nonlinear effect due to the tension in the struts which causes a deflection-dependent nonlinear stiffness. The VSPAERO model is coupled to the corresponding finite-element model to provide a rapid aero-structural analysis. A design flight condition corresponding to Mach 0.745 at 42000 ft is selected for the TTBW aircraft jig twist optimization to reduce the drag coefficient. After the design is implemented, the drag coefficient of the twist optimized TTBW aircraft is reduced about 8 counts. At the end, a high-fidelity CFD solver FUN3D is used to validate the design
Assessment of Temperature-Dependent Regression Model Terms of a RUAG Six-Component Block-Type Balance
A metric called the percent contribution was applied to regression models of temperature-dependent calibration data of a RUAG six-component block-type balance in order to assess the influence of temperature-dependent regression model terms on the balance load prediction. Regression models were examined that are needed if either the Iterative or the Non-Iterative Method is used for the load prediction. Computed values of the percent contribution confirmed that the cross-product term defined by a primary load and the temperature difference is the most influential temperature-dependent term of the regression model of a primary output that the Iterative Method needs. Similarly, the analysis showed that the cross-product term defined by a primary output and the temperature difference is the most influential temperature-dependent term of the regression model of a primary load that the Non-Iterative Method needs. Computed results support conclusions that were reported in an earlier theoretical study. This study asserted that the cross-product term defined by a primary load or output and the temperature difference models the temperature-dependent shift of the gage sensitivity. The influence of other temperature-dependent terms used in the regression models of the calibration data of RUAG's balance was negligible. This observation may be explained by the fact that RUAG's block-type balances have highly linear characteristics. Overall, the percent contribution has proven itself to be a reliable and easy-to-implement metric that may also be used for the assessment of the influence of temperature-dependent regression model terms on the load prediction of a six-component strain-gage balance
Pterodactyl: Control System Demonstrator Development for Integrated Control Design of a Mechanically Deployed Entry Vehicle
The NASA-funded Pterodactyl project is a design, test, and build capability to (i) advance the current state of the art for Deployable Entry Vehicle (DEV) guidance and control (G&C), and (ii) determine the feasibility of control system integration for various entry vehicle types including those without aeroshells. This capability is currently being used to develop control systems for one such unconventional entry vehicle, the Lifting Nano-ADEPT (LNA) vehicle. ADEPT offers the possibility of integrating control systems directly onto the mechanically deployed structure and building hardware demonstrators will help assess integration and design challenges. Control systems based on aerodynamic control surfaces, mass movement, and reaction control systems (RCS) are currently being investigated for a down-select to the most suitable control architecture for the LNA.To that effect, in this submission, we detail the efforts of the Pterodactyl project to develop a series of hardware demonstrators for the different LNA control systems. Rapid prototypes, for a set of quarter- model or eighth-model vehicle segments, will be developed for all three architectures to validate mechanical design assumptions, and hardware-in-the-loop (HIWL) control approaches. A ground test control system demonstrator will be designed and built after the trade study is complete. The industrial-grade demonstrator will be designed so that it can be incorporated into a HWIL simulation to further validate the findings of the initial trade study. The HWIL simulation will leverage the iPAS environment developed at NASA's Johnson Space Center which facilitates integration testing to support technology maturation and risk reduction, necessary elements for the hardware demonstration development detailed in this paper
Pattern Identification - A Foundation for Research in the Emphasis of Design Patterns in Systems Engineering and Knowledge Capture
Pattern Language describes the morphology and functionality of a system in the absence of design particulars. Harnessing this capability will provide the Systems Engineering discipline a means of managing the development of increasingly complex systems with increasingly distributed design teams while capturing and retaining knowledge for future generations. Pattern Language is a syntax for describing, and structurally relating, design patterns. Design patterns contextually describe the application of domain knowledge in the engineered solution to the force balance problem. The parallels between pattern recognition and application, as a fundamental stage of human learning, and pattern observation within a complex system, suggests pattern language may be a valuable tool in the capture and dissemination of knowledge. Pattern application has enjoyed considerable study over the last several decades, however much of this work has focused on the replication of design particulars. This work returns to the roots of Pattern Language and explores the utility of patterns as an architectural description and guide, and knowledge capture method, for complex system development beginning with the identification of a time proven design pattern
NASA RHA Update and Workforce Development
We present a brief overview of select NASA radiation hardness assurance guideline update activities as well as cross-agency workforce development efforts
CFD Predictions of Soot & CO Emissions Generated by a Partially-Fueled 9-Element Lean-Direct Injection Combustor
A study was undertaken to investigate the CO & soot emissions generated by a partially-fueled 9- element LDI (Lean-Direct Injection) combustor configuration operating in the idle range of jet engine conditions. In order to perform the CFD analysis, several existing soot/chemistry models were implemented into the OpenNCC (Open National Combustion Code). The calculations were based on a Reynolds-Averaged Navier Stokes (RANS) simulation with standard k-epsilon turbulence model, a 62- species jet-a/air chemistry, a 2-equation soot model, & a Lagrangian spray solver. A separate transport equation was solved for all individual species involved in jet-a/air combustion. In the test LDI configuration we examined, only five of the nine injectors were fueled with the major pilot injector operating at an equivalence ratio of near one and the other four main injectors operating at an equivalence ratio near 0.55. The calculations helped to identify several reasons behind the soot & CO formation in different regions of the combustor. The predicted results were compared with the reported experimental data on soot mass concentration (SMC) & emissions index of CO (EICO). The experimental results showed that an increase in either T3 and/or F/A ratio lead to a reduction in both EICO & SMC. The predicted results were found to be in reasonable agreement. However, the predicted EICO differed substantially in one test condition associated with higher F/A ratio
New Crop Testing Nutritional and Organoleptic Analysis
Final Poster for New Crop Testing Nutritional and Organoleptic Analysi