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Overview

• Preliminaries
– Conventions & propagation primer
– Mesh Convergence & oversampling

• Results for Cases 1 & 2
– Ground signals for Standard Atm. & Required Atm.
– Cutoff angles
– Carpet noise metrics
– Ground Intercepts, boom carpets & raytubes

• Summary & observations

https://ntrs.nasa.gov/search.jsp?R=20200000443 2020-03-11T13:35:25+00:00Z
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Left–handed

• sBOOM wind uses left handed coord. sys.
• β = heading
• β = 0° A/C pointed East, cw+
• sBOOM wind tables are in meters vs m/s
• x and y are wind components (“blows toward”)

  (x, y) = (1, 0) is tail wind if heading is East
  (x, y) = (0, 1) is tail wind if heading is South
  (x, y) = (1, 1) is tail wind if heading is SE

Wind Convention in sBOOM

• Workshop has aircraft flying E, 
– This is 0° heading in sBOOM
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Propagation Primer

Ray that sound 
travels along

Sound 
generated

Sound heard•

µ
 π  – µ
2 this is the “ray path”

µ = sin�1
� 1

M1

�

• Quasi-1D integration of Burger’s equations occurs in tube along the ray path
• Determines the ground intercept of sound emanating from given trajectory point & azimuth
• Ray path determines time required for signal propagation



• Only consider crossrange and downrange winds (no up/down drafts)
• Wind can alter path of raytube (ray at ϕ=0° shown)
• Paths are scaled by local raytube area Flight path (+x )
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Wind Effects

Raytube from SBPW2 axibody
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Mesh Convergence
Sensitivity of noise output to discretization of near field signal

• Propagation code is solving augmented Burgers’ via finite difference

• Need to make sure loudness metrics are sufficiently mesh converged
• Mesh convergence of propagation is case dependent ( on signal, azimuth & atm.)
• Mesh refinement study done for each near field signal (using Std. and Reqd. Atm.’s)

• Truncation error directly impacts accuracy, resolution requirements are driven by 
need to minimize error in propagation
• Initial signal typically has < 2000 points
• Propagation typically requires 40000-100000 points (oversampled by 20-50x)
• Discrete ASEL filter can be poorly behaved at high sampling frequencies ( > ~250kHz)
➛ this limits maximum allowable oversampling

• How much accuracy is needed?
• Atmospheric variability generally 2-5 dB, but may be ~10 dB in some cases
• Generally tried to keep propagation error under ±0.2 dB
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Mesh Convergence
Sensitivity of noise outputs to refinement of the propagation mesh

Ground Signature     
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Forward ASEL Buildup

Case1, C25P: ϕ = 0°

• C25P signals at ϕ = 0°, using from 20k 300k points (80-1230 kHz) for propagation

• Despite similarities in ground signal, mesh convergence of ASEL is quite slow
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Mesh Convergence
Sensitivity of noise outputs to refinement of the propagation mesh

Ground Signature     
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Forward ASEL Buildup

• C25P signals at ϕ = 0°, using from 20k 300k points (80-1230 kHz) for propagation

• Despite similarities in ground signal, mesh convergence of ASEL is quite slow
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Mesh Convergence
Convergence ASEL noise metric with sampling frequency
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• ASEL converges slowly
– Need ~600kHz (~150k pts) to 

converge ASEL to ±0.01dB

• However, discrete ASEL filter 
starts to have issues at ~250kHz, 
and blows up ~500kHz

• On this case (C25P) hard to 
guarantee ASEL error < ± 0.1dB

• Discrete BSEL and CSEL remain 
well behaved till ~1 & 10 MHz 
(respectively), so generally easier 
to mesh convergeCase1, C25P: ϕ = 0°
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Mesh Convergence
Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

Case1, C25P: ϕ = 0°
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BSEL convergence CSEL convergence PLdB convergence

• BSEL, CSEL and PLdB all show good mesh convergence (all on 1 dB scale)
• FFT used for all metrics except for BSEL, but appears to be well behaved

• C-weighting converges fastest (±0.02 dB @ 200kHz)

• PLdB converges slowest (approx. ±0.1 dB @ 200kHz) 
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Mesh Convergence
Convergence of BSEL, CSEL & PLdB noise metrics with sampling frequency

• To avoid excessive discretization error in propagation used 500-800 kHz sampling 
frequencies for all workshop cases

• Computed noise metrics with FFT in LCASB (adloud) for ASEL, CSEL and PLdB noise 
metrics

• Used digital BSEL filter in sBOOM (well behaved at 500-800 kHz)

Case1, C25P: ϕ = 0°
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Powered version of the NASA Concept 25D
Case 1: C25P

Conditions: 
M∞ = 1.6
Altitude = 15.760 km (52k ft)
Ground height = 264.069m (866ft)
Lprop =  33.53m (110 ft)
r/L = 3.0 at signal extraction
Ground reflection factor = 1.9
Heading East (β = 0°)

Atmospheric Profiles:
1. Required Atm: with profiles for 

wind, temp, pressure & humidity
2. Standard Atmosphere



Case 1: C25P Standard Atmosphere
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Near field and ground pressure signals

Near Field Signals
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• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)
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Prop. Alt =  15760m

Sign Convention for Azimuth, ϕ

Case 1: C25P Standard Atmosphere
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Propagation altitude = 15760 m, ground height = 264 m

Ground Signature

Prop. Alt =  15760m

• Near field data provided for half-cylinder {-90°, 90°}, ({-50°, 50°} shown)
• Propagation shown used 500kHz sampling frequency (142k pts)

Near Field Signal
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Case 1: C25P Ground Signatures
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Standard Atmosphere

Prop. Alt =  15760m

• Reqired Atm. has profiles of crosswind, temperature, humidity and pressure
– Shows lots of asymmetry, and cutoffs are farther out on both sides

Required Atmosphere

Propagation altitude = 15760 m, ground height = 264 m

Case 1: C25P Ground Noise
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Compare ground noise metrics across the carpet as a function of azimuth
Standard Atmosphere

• Azimuthal range of carpet with real atm. is much wider than Standard Atm.
• Real atm. (with wind) reduces peak loudness by ~1dBA, ~0.5dBB, ~0.4dBC & ~0.7PLdB
• Noise at carpet edge drops, but can still be significant

Required Atmosphere
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Case 1: C25P Ground Carpet
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ϕ = -78.4°
t = 386 s

ϕ = -70°
t = 188 s

ϕ = 0°
t = 64.9 s

ϕ = 69.1°
t = 284 s

ϕ = 60°
t = 141 s
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ϕ = 50.8°
t = 162 s
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• Boom carpet computed from the intercepts of raytubes on 
the ground-plane projection of the trajectory. Showing both 
standard and required atmospheres

• Crossrange wind profile makes the required atm. asymmetric
• Cutoff angles: Std. Atm = [±50.8°], Req. Atm = [-78.4°,+69.1°]
• Long propagation distances near signal cutoff imply that 

these raytubes take a long time to reach the ground 
– Raytube for ϕ = -78.4° takes over 6 mins in Required atm.
– Mesh convergence near signal cutoff is not nearly as good as 

at low azimuth angles
– Higher discretization error due to much longer propagation
– Propagation for signal cutoff used higher sampling frequency 

(800 kHz)

• Ground track for required atm is ~160 km, more than 2x as wide 
as standard atm. (~70 km)

Project raytube ground intercepts on aircraft ground track
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Case 1: C25P Raytubes for Required Atmosphere
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• 3D plot of raytubes 
for real atmosphere

• Shows extremely 
long propagation 
times & large raytube 
areas near edges of 
the carpet

Plot 3D raytubes colored by raytube area
Flight path (+x )
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Conditions: 
M∞ = 1.4
Altitude = 16.4592 km (54k ft)
Ground height = 110.011 m (54k ft)
Lref =  27.43 m (90 ft)
r/L = 3 at signal extraction
Ground reflection factor = 1.9
Heading East (β = 0°)

Atmospheric Profiles:
1. Required Atm: with profiles for wind, 

temp, pressure & humidity
2. Standard Atmosphere

Preliminary design of X-59 Low Boom Flight Demonstrator
Case 2: C609

Case 2: C609 Near Field Signals
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Sign Convention for Azimuth, ϕ

r/L = 3

Alt =  16459.2 m
Subset of Near Field Signals

ϕ = +40° ϕ = - 40°
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• Near field signals provided for 23 azimuths from -70° to +70°
   ϕ = [0, ±10, ±20, ±30, ±40, ±50, ±60, ±62, ±64, ±66, ±68, ±70]

• Signals symmetric ±ϕ



Case 2: C609 Sampling Frequency
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Metric convergence with sampling frequency (Std. Atm.)

• Using FFT for metric computation get reasonable mesh 
convergence of ASEL, CSEL and PLdB by 500kHz. 

• Discrete BSEL filter appears well behaved as well
• Similar mesh convergence behavior for other azimuths. 

Used 500kHz sampling frequency away from cutoff.
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Case 2: C609 Ground Signals
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• Reqired Atm. includes profiles of crosswind, temperature, humidity and pressure
– Very asymmetric, with much wider cutoffs on both sides

• Amplitude of ground signal in real atmosphere significantly reduced from Std. Atm.

Standard Atmosphere Required Atmosphere

Propagation altitude = 16460 m, ground elevation = 110 m
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Case 2: C609 Ground Noise
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Compare ground noise metrics across the carpet as a function of azimuth
Standard Atmosphere

• Azimuthal range of carpet with Required Atm. is much wider than Standard Atm.
• Despite wind & reduced ground amplitude, Real Atm. and Std. Atm. have similar loudness
• Noise at carpet edge drops significantly in Required Atm.

Required Atmosphere
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Case 2: C609 Ground Carpet
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Project raytube ground intercepts on aircraft ground track

• Boom carpet computed from the intercepts of raytubes on the 
ground-plane projection of the trajectory. Showing both 
standard and required atmospheres

• Crossrange wind profile makes the required atm. asymmetric
• Cutoff angles Req. Atm = [-64.1°, 70.6°], Std. Atm = [±44.9°]
• Long propagation distances near signal cutoff imply that 

these raytubes take a long time to reach the ground 
– Raytube for ϕ = -64.1° cutoff takes over 8.5 mins in Reqd. atm.
– Mesh convergence near signal cutoff is not nearly as good as 

at low azimuth angles
– Higher discretization error due to much longer propagation
– Propagation for signal cutoff rays used higher sampling 

frequency (800 kHz)

• Ground track for required atm is ~160 km, more than 2.7x as wide 
as standard atm. (~60 km)

ϕ = -60°
t = 195 s
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Case 2: C609 Raytubes for Required Atmosphere
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Crossrange

Downrange

• 3D plot of raytubes 
for real atmosphere

• Shows extremely 
long propagation 
times & large raytube 
areas near cutoff

Plot 3D raytubes colored by raytube area

1
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Summary

• Applied sBOOM v2.82 & LCASB to all required and optional steady propagation cases 

• Mesh convergence studies across the carpet to ensure accuracy of the ground signal and loudness 
metrics. Error in noise metrics can be 2-4x higher near signal cutoff. 

• Mesh convergence is relatively slow on intricate non-smooth input signals

• Real atmosphere is usually quieter than Standard Atmosphere, (but not always - e.g. case 2) 

• Ground track of real atmosphere can be nearly 3x wider than Standard day. Crosswinds generally 
increase track width and can result in large cutoff azimuths 

• On windy days, boom may not arrive off-track for over 5 mins after a/c passes (case 2 took 8 mins!)

• Raytube visualization shows potential for loud off-track azimuths to be blown back under-track
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