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A metric called the percent contribution was applied to regression models of
temperature–dependent calibration data of a RUAG six–component block–type
balance in order to assess the influence of temperature–dependent regression
model terms on the balance load prediction. Regression models were examined
that are needed if either the Iterative or the Non–Iterative Method is used for
the load prediction. Computed values of the percent contribution confirmed that
the cross–product term defined by a primary load and the temperature difference
is the most influential temperature–dependent term of the regression model of a
primary output that the Iterative Method needs. Similarly, the analysis showed
that the cross–product term defined by a primary output and the temperature
difference is the most influential temperature–dependent term of the regression
model of a primary load that the Non–Iterative Method needs. Computed re-
sults support conclusions that were reported in an earlier theoretical study. This
study asserted that the cross–product term defined by a primary load or output
and the temperature difference models the temperature–dependent shift of the
gage sensitivity. The influence of other temperature–dependent terms used in
the regression models of the calibration data of RUAG’s balance was negligible.
This observation may be explained by the fact that RUAG’s block–type bal-
ances have highly linear characteristics. Overall, the percent contribution has
proven itself to be a reliable and easy–to–implement metric that may also be
used for the assessment of the influence of temperature–dependent regression
model terms on the load prediction of a six–component strain–gage balance.

Nomenclature

a◦,k, a1,k, . . . = regression coefficients of the k–th transformed output (Iterative Method)
b◦,k, b1,k, . . . = regression coefficients of the k–th load component (Non–Iterative Method)
k = index of either a load component or a transformed output
F = load vector
F1, . . . , F6 = generic names of the individual components of load vector F
Fx = axial force of a strain–gage balance
Fx

? = maximum applied axial force during calibration –or– axial force capacity
Fy = side force of a strain–gage balance
Fy

? = maximum applied side force during calibration –or– side force capacity
Fz = normal force of a strain–gage balance
Fz

? = maximum applied normal force during calibration –or– normal force capacity
Mx = rolling moment of a strain–gage balance
Mx

? = maximum applied rolling moment during calibration –or– rolling moment capacity
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My = pitching moment of a strain–gage balance
My

? = maximum applied pitching moment during calibration –or– pitching moment capacity
Mz = yawing moment of a strain–gage balance
Mz

? = maximum applied yawing moment during calibration –or– yawing moment capacity
P = percent contribution of the regression model term of an output (Iterative Method)
Q = percent contribution of the regression model term of a load (Non–Iterative Method)
U1, . . . , U7 = individual electrical outputs of a RUAG six–component block–type balance
W = output vector
W1 = transformed output of a RUAG block–type balance that is proportional to Fx
W1

? = maximum output at load capacity of first transformed output of a RUAG balance
W2 = transformed output of a RUAG block–type balance that is proportional to Fy
W2

? = maximum output at load capacity of second transformed output of a RUAG balance
W3 = transformed output of a RUAG block–type balance that is proportional to Fz
W3

? = maximum output at load capacity of third transformed output of a RUAG balance
W4 = transformed output of a RUAG block–type balance that is proportional to Mx

W4
? = maximum output at load capacity of fourth transformed output of a RUAG balance

W5 = transformed output of a RUAG block–type balance that is proportional to My

W5
? = maximum output at load capacity of fifth transformed output of a RUAG balance

W6 = transformed output of a RUAG block–type balance that is proportional to Mz

W6
? = maximum output at load capacity of sixth transformed output of a RUAG balance

∆T = temperature difference
∆T ? = capacity of the temperature difference
η = index of a regression coefficient
ξ(Fk) = term of the regression model of the fitted load component Fk
ξ(Wk) = term of the regression model of the fitted transformed output Wk

I. Introduction

Temperature–dependent calibration data of RUAG Aviation’s 788–6A six–component block–type wind
tunnel balance was recently analyzed using a new approach. This approach predicted balance loads by using
(i) the measured electrical outputs of the balance and (ii) the temperature difference as input (Ref. [1]).
The analysis confirmed that the most influential temperature–dependent term in the regression model of the
calibration data is the cross–product term that models the shift of the gage sensitivity (see, e.g., Ref. [2] for
a detailed discussion of this phenomenon).

In general, the required temperature–dependent cross–product term is a function of the temperature
difference and a primary load or a primary output of the balance depending on the chosen load prediction
method. For clarity, precise definitions of primary load, primary output, and prime sensitivity are given in
the box below. Let us assume, for example, that an analyst chooses the Iterative Method for the balance

Primary Load – Primary Output – Prime Sensitivity

A primary load of a strain–gage balance is defined to be a load component that is responsible for more than 90 % of

the electrical signal of the related primary output whenever it is exclusively applied to the balance. For example, the

axial force is a typical primary load of a six–component balance. The axial gage output is the related primary output

because more than 90 % of its signal is caused by the axial force whenever it is exclusively applied to the balance. The

prime sensitivity of a balance gage is the first derivative of a primary output with respect to the related primary load.

load prediction (see, e.g., Refs. [3], [4] for details about this load prediction approach). Then, the
temperature–dependent cross–product term equals the product of the primary load of the fitted output
with the temperature difference. Alternatively, an analyst may choose the Non–Iterative Method for the
balance load prediction (see Ref. [4] for details about the Non–Iterative Method). Then, the temperature–

2

American Institute of Aeronautics and Astronautics



dependent cross–product term equals the product of the primary output of the fitted load component with
the temperature difference.

RUAG’s six–component block–type balances are designed to be highly linear in their behavior. This
characteristic may explain the fact that only six cross–product terms, i.e., one term for each primary output
or load component, out of the forty–two possible temperature–dependent terms were needed to develop
temperature–dependent load prediction equations for the RUAG 788–6A balance. The forty–two possible
terms consist of one pure temperature term plus six temperature–dependent cross–product terms for each
one of the six primary load components or primary outputs of the balance. Other types of six–component
balances may need more than six temperature–dependent terms for an accurate load prediction. Therefore,
the authors concluded that is would be useful to have a reliable and easy–to–implement metric available so
that the influence of different temperature–dependent regression model terms on the balance load prediction
can objectively be assessed.

The so–called “percent contribution” is often used in the aerospace testing community to evaluate the
influence of a regression model term of balance calibration data whenever the Iterative Method is used for
the balance load prediction (a description of this metric is given in the appendix of Ref. [5]). Therefore, the
authors decided to modify the original definition of the percent contribution so that it would work with both
the Iterative and the Non–Iterative Method. Afterwards, they applied the metric to the recently analyzed
temperature–dependent calibration data of RUAG’s 788–6A balance in order to investigate if the metric
would be useful for the assessment of temperature–dependent regression model terms.

Basic characteristics of the calibration data of RUAG’s 788–6A balance are reviewed in the next section.
Afterwards, results of the application of the percent contribution to the regression models of its calibration
data using both the Iterative and Non–Iterative Method are discussed in detail.

II. Balance Description and Temperature Calibration

Block–type balances have been under development for many years at RUAG’s Aerodynamics Department
(see Refs. [6] and [7]). These balances may be used as internal balances when installed close to the model’s
aerodynamic center of pressure. Similarly, they may be used as external balances in vehicle aerodynamic
testing when mounted on a turntable below the test section floor. Figure 1 below shows RUAG’s family
of block–type balances. The family currently consists of six balances that are scaled to meet different

796
788

777
767

798

Fig. 1 Family of RUAG’s six–component block–type balances (Models 798, 796, 788, 777, 767).

applications (only five of the six balances are shown in Fig. 1). Table 1 below lists, for example, the “design
loads” of the RUAG 788–6A balance. These upper load limits were defined assuming that all loads act
simultaneously on the balance.

Table 1: Design loads† of RUAG’s 788–6A block–type balance.

Fx, N Fy, N Fz, N Mx, Nm My, Nm Mz, Nm

4 000 600 8 000 300 1100 1000

†Design load ≡ maximum load assuming that all loads act simultaneously on the balance.
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Similarly, Table 2 below lists the “limit loads” of the RUAG 788–6A balance. These alternate upper
load limits are defined assuming that only a single load acts on the balance at a time. The balance itself has

Table 2: Limit loads† of RUAG’s 788–6A block–type balance.

Fx, N Fy, N Fz, N Mx, Nm My, Nm Mz, Nm

4 000 10 000 25 000 1 000 3 000 1 100

†Limit load ≡ maximum load assuming that a single load acts on the balance.

a non–metric base plate with seven trapezoidal beams that are connected by joint rods to their counterparts
on the metric side. Each beam is instrumented with a strain–gage bridge that experiences an electrical signal
change whenever the beam elastically deforms.

RUAG’s block–type balances measure six load components, i.e., Fx, Fy, Fz, Mx, My, Mz, that are
described in “direct–read format.” They are predicted using seven electrical output measurements, i.e.,
U1, U2, . . ., U7, as input. These seven outputs can be transformed to a set of six independent outputs,
i.e., W1, W2, . . ., W6, so that (i) approximate linear relationships between one load component and one
transformed output are established and (ii) the mathematical analysis of the balance data does not lead to
an overdetermined linear system of equations. The output transformations for a RUAG block–type balance
can be summarized as follows:

W1 = + U7 ⇐⇒ primary load ≡ Fx (1a)

W2 = + U5 + U6 ⇐⇒ primary load ≡ Fy (1b)

W3 = + U1 + U2 + U3 + U4 ⇐⇒ primary load ≡ Fz (1c)

W4 = + U1 + U2 − U3 − U4 ⇐⇒ primary load ≡ Mx (1d)

W5 = − U1 + U2 − U3 + U4 ⇐⇒ primary load ≡ My (1e)

W6 = + U5 − U6 ⇐⇒ primary load ≡ Mz (1f)

The use of the six output transformations above allows for the description of both loads and outputs of
the calibration data of a RUAG block–type balance in “direct–read format” as each load component, i.e., each
primary load, becomes directly related to a single transformed output, i.e., a single primary output. This
characteristic makes it possible to define the percent contribution of a regression model term of calibration
data from a RUAG block–type balance if either the Iterative Method or the Non–Iterative Method is used
for the balance load prediction.

Recently, RUAG performed a calibration of its 788–6A balance at two temperatures to better charac-
terize the physical behavior of the balance at different temperatures. Details of this calibration can be found
in Ref. [1]. The analysis of the temperature–dependent calibration data of the RUAG 788–6A balance was
done with NASA’s BALFIT software tool (Ref. [8]). The calibration data supported a total of twenty–seven
terms for each one of the six regression models of the outputs (Iterative Method) and for each one of the six
regression models of the loads (Non–Iterative Method). The calculation of the percent contribution of the
temperature–dependent terms of these twelve regression models is discussed in the next section.

III. Percent Contribution of Temperature–Dependent Terms

A. Definition of the Percent Contribution

It is possible to use the percent contribution for the assessment of the significance of temperature–
dependent terms of regression models that were used for the analysis of the RUAG 788–6A balance
calibration data. First, the definition of the percent contribution for the Iterative Method is discussed
(see also the appendix of Ref. [5] for more details). This definition can be summarized as follows:
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Iterative Method – Percent Contribution of a Regression Model Term

The percent contribution P of a term ξ(Wk) of the regression model of a balance output Wk is a
fraction that is multiplied by 100 %. The numerator of this fraction equals the product of
the term’s coefficient and the capacities of all variables, i.e, loads and/or the temperature
difference, that define the term. The denominator of the fraction equals the product of the
coefficient of the primary load of the fitted output Wk and the related load capacity.
The load capacity is defined as the maximum applied load of the component during calibration.

It is useful to express this verbal description of the percent contribution for the Iterative Method by
using the following formula:

P
[
ξ(Wk)

]
≡

Coefficient
[
ξ(Wk)

]
× Capacity

[
ξ(Wk)

]
× 100 %

Coefficient
[
Primary Load(Wk)

]
× Capacity

[
Primary Load(Wk)

] (2)

where

Wk ≡ k−th output of the balance

ξ(Wk) ≡ term of the regression model of the fitted output Wk

The exact meaning of “capacity” still needs to be defined in this context so that the percent contribution
can be computed. The authors define “capacity” to be the “maximum applied load” of a load component
that acts on the balance during its calibration. In other words, “capacity” is simply a reference value that
is needed to make the percent contribution a dimensionless quantity. It is not necessarily identical with the
“design load” or the “limit load” of a load component that may be needed to monitor stresses of the balance
during use in the wind tunnel.

The general definition of the percent contribution can also be extended to the Non–Iterative Method.
Then, the definition of the percent contribution can be summarized as follows:

Non–Iterative Method – Percent Contribution of a Regression Model Term

The percent contribution Q of a term ξ(Fk) of the regression model of a balance load Fk is a
fraction that is mulitplied by 100 %. The numerator of this fraction equals the product of
the term’s coefficient and the capacities of all variables, i.e., outputs and/or the temperature
difference, that define the term. The denominator of the fraction equals the product of the
coefficient of the primary output of the fitted load Fk and the related output capacity.
The output capacity is defined in this context as the maximum output at load capacity.

Again, it is helpful to express this verbal description of the percent contribution for the Non–Iterative
Method by the following formula:
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Q
[
ξ(Fk)

]
≡

Coefficient
[
ξ(Fk)

]
× Capacity

[
ξ(Fk)

]
× 100 %

Coefficient
[
Primary Output(Fk)

]
× Capacity

[
Primary Output(Fk)

] (3)

where

Fk ≡ k−th load component of the balance

ξ(Fk) ≡ term of the regression model of the fitted load component Fk

It will be demonstrated in the next section how the percent contribution was computed for the
temperature–dependent terms of the six regression models of the outputs that were used during the ap-
plication of the Iterative Method to the calibration data of the RUAG 788–6A balance.

B. Results for the Iterative Method
The Iterative Method first fits electrical outputs of a balance as a function of the loads and the tem-

perature difference. Afterwards, an iteration equation is constructed from the result so that loads can be
predicted from outputs and the temperature during a wind tunnel test. The percent contribution of the
terms of the regression model of the outputs can be defined by using the temperature–dependent regression
model that was used for the analysis of the calibration data of the RUAG 788–6A balance. BALFIT’s anal-
ysis of the calibration data showed that twenty–seven regression model terms for each transformed output
were supported (intercept, seven linear terms, six quadratic terms, and thirteen cross–product terms). The
corresponding regression model of a transformed output has the following general form . . .

Wk = a◦,k + a1,k · Fx + a2,k · Fy + . . . + a6,k ·Mz + a7,k ·∆T︸ ︷︷ ︸
linear terms

+ a8,k · F 2
x + a9,k · F 2

y + . . . + a13,k ·M2
z︸ ︷︷ ︸

quadratic terms

+ a14,k · Fx ·Mz + a15,k · Fy ·Mx + . . . + a20,k ·Mx ·Mz︸ ︷︷ ︸
cross−product terms

+ a21,k · Fx ·∆T + a22,k · Fy ·∆T + . . . + a26,k ·Mz ·∆T︸ ︷︷ ︸
temperature−dependent cross−product terms

(4a)

assuming that “Wk” is the k–th component of output vector W. This vector is defined as follows:

W =


W1

...
Wk

...
W6

 (4b)

Table 3 below shows the subset of temperature–dependent regression model terms of the six transformed
outputs that were supported by the load schedule of the balance calibration data (for more detail see Ref. [1]).

Table 3: Temperature–dependent regression model terms of the outputs of the calibration data.

Iterative Method =⇒ List of Temperature–Dependent Terms for W1, W2, . . ., W6

∆T , (Fx ·∆T ) , (Fy ·∆T ) , (Fz ·∆T ) , (Mx ·∆T ) , (My ·∆T ) , (Mz ·∆T )
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Then, using the general definition of the percent contribution that is provided in Eq. (2) above and the
coefficient nomenclature given in Eq. (4a), percent contributions of the temperature–dependent terms of the
three primary outputs W1, W2, and W3 of the RUAG 788–6A balance are defined as follows:

Table 4a: Percent contribution definition of the temperature terms of the gage outputs W1 to W3.

ξ(Wk)
W1 W2 W3

(primary load = Fx) (primary load = Fy) (primary load = Fz)

∆T
a7,1 ·∆T ?

a1,1 · Fx?
· 100%

a7,2 ·∆T ?

a2,2 · Fy?
· 100%

a7,3 ·∆T ?

a3,3 · Fz?
· 100%

Fx ·∆T
a21,1 · Fx? ·∆T ?

a1,1 · Fx?
· 100%

a21,2 · Fx? ·∆T ?

a2,2 · Fy?
· 100%

a21,3 · Fx? ·∆T ?

a3,3 · Fz?
· 100%

Fy ·∆T
a22,1 · Fy? ·∆T ?

a1,1 · Fx?
· 100%

a22,2 · Fy? ·∆T ?

a2,2 · Fy?
· 100%

a22,3 · Fy? ·∆T ?

a3,3 · Fz?
· 100%

Fz ·∆T
a23,1 · Fz? ·∆T ?

a1,1 · Fx?
· 100%

a23,2 · Fz? ·∆T ?

a2,2 · Fy?
· 100%

a23,3 · Fz? ·∆T ?

a3,3 · Fz?
· 100%

Mx ·∆T
a24,1 ·Mx

? ·∆T ?

a1,1 · Fx?
· 100%

a24,2 ·Mx
? ·∆T ?

a2,2 · Fy?
· 100%

a24,3 ·Mx
? ·∆T ?

a3,3 · Fz?
· 100%

My ·∆T
a25,1 ·My

? ·∆T ?

a1,1 · Fx?
· 100%

a25,2 ·My
? ·∆T ?

a2,2 · Fy?
· 100%

a25,3 ·My
? ·∆T ?

a3,3 · Fz?
· 100%

Mz ·∆T
a26,1 ·Mz

? ·∆T ?

a1,1 · Fx?
· 100%

a26,2 ·Mz
? ·∆T ?

a2,2 · Fy?
· 100%

a26,3 ·Mz
? ·∆T ?

a3,3 · Fz?
· 100%

Similarly, percent contributions of the temperature–dependent terms of the three primary outputs W4,
W5, and W6 are defined as follows:

Table 4b: Percent contribution definition of the temperature terms of the gage outputs W4 to W6.

ξ(Wk)
W4 W5 W6

(primary load = Mx) (primary load = My) (primary load = Mz)

∆T
a7,4 ·∆T ?

a4,4 ·Mx
? · 100%

a7,5 ·∆T ?

a5,5 ·My
? · 100%

a7,6 ·∆T ?

a6,6 ·Mz
? · 100%

Fx ·∆T
a21,4 · Fx? ·∆T ?

a4,4 ·Mx
? · 100%

a21,5 · Fx? ·∆T ?

a5,5 ·My
? · 100%

a21,6 · Fx? ·∆T ?

a6,6 ·Mz
? · 100%

Fy ·∆T
a22,4 · Fy? ·∆T ?

a4,4 ·Mx
? · 100%

a22,5 · Fy? ·∆T ?

a5,5 ·My
? · 100%

a22,6 · Fy? ·∆T ?

a6,6 ·Mz
? · 100%

Fz ·∆T
a23,4 · Fz? ·∆T ?

a4,4 ·Mx
? · 100%

a23,5 · Fz? ·∆T ?

a5,5 ·My
? · 100%

a23,6 · Fz? ·∆T ?

a6,6 ·Mz
? · 100%

Mx ·∆T
a24,4 ·Mx

? ·∆T ?

a4,4 ·Mx
? · 100%

a24,5 ·Mx
? ·∆T ?

a5,5 ·My
? · 100%

a24,6 ·Mx
? ·∆T ?

a6,6 ·Mz
? · 100%

My ·∆T
a25,4 ·My

? ·∆T ?

a4,4 ·Mx
? · 100%

a25,5 ·My
? ·∆T ?

a5,5 ·My
? · 100%

a25,6 ·My
? ·∆T ?

a6,6 ·Mz
? · 100%

Mz ·∆T
a26,4 ·Mz

? ·∆T ?

a4,4 ·Mx
? · 100%

a26,5 ·Mz
? ·∆T ?

a5,5 ·My
? · 100%

a26,6 ·Mz
? ·∆T ?

a6,6 ·Mz
? · 100%

7

American Institute of Aeronautics and Astronautics



The regression coefficients listed in Tables 4a and 4b above were determined during the regression
analysis that is described in Ref. [1]. Therefore, only the capacities of the seven independent variables are
missing in order to compute the percent contribution of the terms. They are listed in Table 5a below.

Table 5a: Capacities of the temperature difference and the load components.†

∆T ?, degK Fx
?, N Fy

?, N Fz
?, N Mx

?, Nm My
?, Nm Mz

?, Nm

21 4300 5300 5300 500 1200 800

†capacity of a load component ≡ maximum applied load of the component that acted during the calibration.

Finally, the percent contributions of the temperature–dependent terms were computed. Table 5b below
lists results of this calculation. It is observed that the six temperature–dependent cross–product terms
associated with the primary load component of each output, i.e., the terms that model the sensitivity shift

Table 5b: Iterative Method – Percent contribution of the temperature–dependent terms of the
regression models of the six transformed outputs of the RUAG 788–6A block–type balance.

ξ(Wk) W1 W2 W3 W4 W5 W6

∆T +0.01 % −0.01 % ±0.00 % +0.02 % +0.01 % −0.02 %

Fx ·∆T +0.52 % −0.04 % −0.04 % ± 0.00 % −0.02 % −0.04 %

Fy ·∆T +0.08 % +0.54 % +0.07 % +0.04 % +0.01 % +0.01 %

Fz ·∆T +0.16 % +0.02 % +0.54 % +0.11 % −0.03 % −0.01 %

Mx ·∆T +0.03 % −0.03 % −0.02 % +0.58 % −0.12 % −0.08 %

My ·∆T −0.03 % +0.02 % −0.04 % +0.01 % +0.60 % −0.02 %

Mz ·∆T ±0.00 % +0.01 % +0.02 % +0.04 % −0.02 % +0.62 %

of a gage, are the dominant temperature–dependent terms. Corresponding values are printed in boldface in
Table 5b above. All other temperature–dependent terms make negligible contributions.

The percent contributions of the temperature–dependent terms of the six regression models of the loads
are discussed in the next section of the paper. Those regression models were obtained by applying the
Non–Iterative Method to the calibration data.

C. Results for the Non–Iterative Method

The Non–Iterative Method was also used for the analysis of the temperature–dependent calibration data
of the RUAG 788–6A balance. In that case, the six load components were directly fitted as a function of
the transformed outputs. Afterwards, the percent contribution of individual terms of the chosen regression
models of the loads was computed. Again, as it was the case for the regression models of the electrical
outputs, the temperature–dependent calibration data supported a total of twenty–seven terms for each load
component (intercept, seven linear terms, six quadratic terms, and thirteen cross–product terms). The
resulting regression model for each one of the six load components can be defined as follows . . .

Fk = b◦,k + b1,k ·W1 + . . . + b6,k ·W6 + b7,k ·∆T︸ ︷︷ ︸
linear terms

+ b8,k ·W 2
1 + . . . + b13,k ·W 2

6︸ ︷︷ ︸
quadratic terms

+ b14,k ·W1 ·W6 + b15,k ·W2 ·W4 + . . . + b20,k ·W4 ·W6︸ ︷︷ ︸
cross−product terms

+ b21,k ·W1 ·∆T + b22,k ·W2 ·∆T + . . . + b26,k ·W6 ·∆T︸ ︷︷ ︸
temperature−dependent cross−product terms

(5a)
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assuming that “Fk” is the k–th component of a load vector F. This vector is defined as follows:

F =


F1
...
Fk
...
F6

 ≡


Fx
Fy
Fz
Mx

My

Mz

 (5b)

Table 6 below shows the subset of temperature–dependent regression model terms of the six loads that
were supported by the load schedule of the balance calibration data (see also Ref. [1]).

Table 6: Temperature–dependent regression model terms of the loads of the calibration data.

Non–Iterative Method =⇒ List of Temperature–Dependent Terms for Fx, Fy, . . ., Mz

∆T , (W1 ·∆T ) , (W2 ·∆T ) , (W3 ·∆T ) , (W4 ·∆T ) , (W5 ·∆T ) , (W6 ·∆T )

Now, after combining the general definition of the percent contribution given in Eq. (3) above with the
coefficient nomenclature given in Eq. (5a), the percent contributions of the temperature–dependent terms of
the three forces Fx, Fy, and Fz can be defined as follows:

Table 7a: Percent contribution definition of the temperature terms of the forces Fx, Fy, and Fz.

ξ(Fk)
F1 ≡ Fx F2 ≡ Fy F3 ≡ Fz

(primary output = W1) (primary output = W2) (primary output = W3)

∆T
b7,1 ·∆T ?

b1,1 ·W1
? · 100%

b7,2 ·∆T ?

b2,2 ·W2
? · 100%

b7,3 ·∆T ?

b3,3 ·W3
? · 100%

W1 ·∆T
b21,1 ·W1

? ·∆T ?

b1,1 ·W1
? · 100%

b21,2 ·W1
? ·∆T ?

b2,2 ·W2
? · 100%

b21,3 ·W1
? ·∆T ?

b3,3 ·W3
? · 100%

W2 ·∆T
b22,1 ·W2

? ·∆T ?

b1,1 ·W1
? · 100%

b22,2 ·W2
? ·∆T ?

b2,2 ·W2
? · 100%

b22,3 ·W2
? ·∆T ?

b3,3 ·W3
? · 100%

W3 ·∆T
b23,1 ·W3

? ·∆T ?

b1,1 ·W1
? · 100%

b23,2 ·W3
? ·∆T ?

b2,2 ·W2
? · 100%

b23,3 ·W3
? ·∆T ?

b3,3 ·W3
? · 100%

W4 ·∆T
b24,1 ·W4

? ·∆T ?

b1,1 ·W1
? · 100%

b24,2 ·W4
? ·∆T ?

b2,2 ·W2
? · 100%

b24,3 ·W4
? ·∆T ?

b3,3 ·W3
? · 100%

W5 ·∆T
b25,1 ·W5

? ·∆T ?

b1,1 ·W1
? · 100%

b25,2 ·W5
? ·∆T ?

b2,2 ·W2
? · 100%

b25,3 ·W5
? ·∆T ?

b3,3 ·W3
? · 100%

W6 ·∆T
b26,1 ·W6

? ·∆T ?

b1,1 ·W1
? · 100%

b26,2 ·W6
? ·∆T ?

b2,2 ·W2
? · 100%

b26,3 ·W6
? ·∆T ?

b3,3 ·W3
? · 100%

Similarly, the percent contributions of the temperature–dependent terms of the regression models of the
three moments Mx, My, and Mz are defined as follows:
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Table 7b: Percent contribution definition of the temperature terms of the moments Mx, My, and Mz.

ξ(Fk)
F4 ≡Mx F5 ≡My F6 ≡Mz

(primary output = W4) (primary output = W5) (primary output = W6)

∆T
b7,4 ·∆T ?

b4,4 ·W4
? · 100%

b7,5 ·∆T ?

b5,5 ·W5
? · 100%

b7,6 ·∆T ?

b6,6 ·W6
? · 100%

W1 ·∆T
b21,4 ·W1

? ·∆T ?

b4,4 ·W4
? · 100%

b21,5 ·W1
? ·∆T ?

b5,5 ·W5
? · 100%

b21,6 ·W1
? ·∆T ?

b6,6 ·W6
? · 100%

W2 ·∆T
b22,4 ·W2

? ·∆T ?

b4,4 ·W4
? · 100%

b22,5 ·W2
? ·∆T ?

b5,5 ·W5
? · 100%

b22,6 ·W2
? ·∆T ?

b6,6 ·W6
? · 100%

W3 ·∆T
b23,4 ·W3

? ·∆T ?

b4,4 ·W4
? · 100%

b23,5 ·W3
? ·∆T ?

b5,5 ·W5
? · 100%

b23,6 ·W3
? ·∆T ?

b6,6 ·W6
? · 100%

W4 ·∆T
b24,4 ·W4

? ·∆T ?

b4,4 ·W4
? · 100%

b24,5 ·W4
? ·∆T ?

b5,5 ·W5
? · 100%

b24,6 ·W4
? ·∆T ?

b6,6 ·W6
? · 100%

W5 ·∆T
b25,4 ·W5

? ·∆T ?

b4,4 ·W4
? · 100%

b25,5 ·W5
? ·∆T ?

b5,5 ·W5
? · 100%

b25,6 ·W5
? ·∆T ?

b6,6 ·W6
? · 100%

W6 ·∆T
b26,4 ·W6

? ·∆T ?

b4,4 ·W4
? · 100%

b26,5 ·W6
? ·∆T ?

b5,5 ·W5
? · 100%

b26,6 ·W6
? ·∆T ?

b6,6 ·W6
? · 100%

The coefficients listed in Tables 7a and 7b above were determined during the regression analysis of
the data that is described in Ref. [1] (only coefficients of the axial force Fx were actually published in
Ref. [1]). The “capacities” of the seven independent variables, i.e., of the six transformed outputs and the
temperature difference, still need to be specified in order to compute the percent contributions. The capacity
of the temperature difference equals 21 degK, i.e., the same value that is specified in Table 5a. The authors
suggest to assign the maximum outputs at load capacity to be the “capacities” of the six outputs. These
values are simply obtained by multiplying the prime sensitivity of each transformed output with the capacity
of the related primary load. Then, the following expression is obtained for the capacities of the outputs:

definition of maximum output at load capacity =⇒ Wk
? ≡ ∂ Wk

∂ Fk︸ ︷︷ ︸
sensitivity

· Fk
? (6)

Table 8 below lists the prime sensitivity for each transformed output that was computed after apply-
ing the Non–Iterative Method to the calibration data of RUAG’s 788–6A balance. Those values are the
inverse values (1/b1,1), (1/b2,2), . . . , (1/b6,6) of the coefficients of the primary outputs W1, W2, . . . , W6 in
the regression models of the related primary loads Fx, Fy, . . . , Mz that are defined in Eq. (5a).

Table 8: Prime sensitivities of the transformed outputs of the RUAG 788–6A balance.

∂W1/∂Fx ∂W2/∂Fy ∂W3/∂Fz ∂W4/∂Mx ∂W5/∂My ∂W6/∂Mz

(µV/V )/N (µV/V )/N (µV/V )/N (µV/V )/(Nm) (µV/V )/(Nm) (µV/V )/(Nm)

0.4653 0.3639 0.3093 8.1179 2.6933 3.5753

Now, after using Eq. (6) above in combination with the computed sensitivities (Table 8) and the assigned
load capacities (Table 5a), the capacities of (i) the temperature difference and (ii) the transformed outputs
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can be determined. The following values were obtained:

Table 9a: Capacities of the temperature difference and the transformed outputs.†

∆T ? W1
? W2

? W3
? W4

? W5
? W6

?

degK µV/V µV/V µV/V µV/V µV/V µV/V

21 2 001 1929 1639 4 059 3 232 2 860

†capacity of a transformed output ≡ maximum output at load capacity; see also Eq. (6).

Finally, the percent contributions of the temperature–dependent terms of the regression models of the
six loads can be computed. Table 9b below lists results of this calculation. Again, it is observed that
the temperature–dependent cross–product term of the primary output of the load component, i.e., the term
directly associated with the sensitivity shift of a given output, is the dominant term. Corresponding values are
printed in boldface in Table 9b below. All other temperature–dependent terms make negligible contributions
to the load prediction.

Table 9b: Non–Iterative Method – Percent contribution of the temperature–dependent terms
of the regression models of the forces and moments of the RUAG 788–6A block–type balance.

ξ(Fk) F1 ≡ Fx F2 ≡ Fy F3 ≡ Fz F4 ≡Mx F5 ≡My F6 ≡Mz

∆T −0.02 % +0.02 % ±0.00 % −0.02 % ±0.00 % +0.02 %

W1 ·∆T −0.51 % +0.04 % +0.04 % ±0.00 % +0.02 % +0.04 %

W2 ·∆T −0.08 % −0.54 % −0.06 % −0.04 % −0.01 % −0.02 %

W3 ·∆T −0.16 % −0.02 % −0.53 % −0.11 % +0.03 % +0.01 %

W4 ·∆T −0.03 % +0.02 % +0.01 % −0.57 % +0.10 % +0.08 %

W5 ·∆T +0.03 % −0.02 % +0.04 % ±0.00 % −0.59 % +0.02 %

W6 ·∆T ±0.00 % −0.02 % −0.02 % −0.04 % +0.02 % −0.61 %

The authors observed during the analysis that the percent contributions shown in Table 5b for the
Iterative Method and in Table 9b above for the Non–Iterative Method appear to be similar in magnitude but
opposite in sign if values of related terms are compared (e.g., compare the value for Fx · ∆T in Table 5b
with the value for W1 · ∆T in Table 9b). This characteristic is no coincidence. In fact, it is rigorously
proven in the appendix of the paper that the percent contribution obtained for a regression model term
of a primary output must be similar in magnitude but opposite in sign to the percent contribution of the
corresponding regression model term of the related primary load as long as (i) the given balance data is
analyzed in its design format (i.e., direct–read balance data is analyzed in direct–read format, or, force
balance data is analyzed in force balance format, or, moment balance data is analyzed in moment balance
format), (ii) the type and number of terms of the regression model of a primary output matches the type
and number of terms of the regression model of the related primary load, and (iii) the capacity of an output
is assigned to be the maximum output at load capacity.

IV. Summary and Conclusions

A metric called the “percent contribution of a regression model term” was successfully applied to
temperature–dependent calibration data of a RUAG six–component block–type balance in order to assess the
influence of different types of temperature–dependent regression model terms of balance calibration data on
the load prediction. A detailed review of the computed percent contributions showed that the cross–product
term directly associated with the modeling of the temperature–dependent nature of the gage sensitivity is by
far the most influential temperature–dependent term. This result can be explained by the fact that RUAG’s
block–type balances are highly linear in their behavior. Additional temperature–dependent cross–product
terms may become significant if the authors’ approach is applied to other types of six–component strain–gage
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balances. Percent contributions obtained for the temperature–dependent terms of regression models of the
Iterative Method are, as expected, similar in magnitude but opposite in sign when compared with values that
are obtained for corresponding regression model terms of the Non–Iterative Method. The authors recommend
the use of the percent contribution for the evaluation of temperature–dependent regression model terms of
strain–gage balance data because the metric appears to be reliable and is easily implemented.
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Appendix: Relationship between Percent Contributions

A comparison of the percent contributions of the temperature–dependent regression model terms of the
outputs (Table 5b) with corresponding values of the loads (Table 9b) indicates that values of related terms
appear to be similar in magnitude but opposite in sign. This observation is not limited to temperature–
dependent terms. In fact, the characteristic can rigorously be proven for a subset of terms if the following
five assumptions are made: (I) the balance data is analyzed in its “design” format (e.g., direct–read balance
data is analyzed in direct–read format, or, force balance data is analyzed in force balance format, or, moment
balance data is analyzed in moment balance format); (II) the type and number of terms of the regression
model of a primary output matches the type and number of terms of the regression model of the related
primary load; (III) the capacity of an output is assigned to be the maximum output at load capacity; (IV) the
absolute value of the percent contribution of a term is on the order of -or- less than 10 %; (V) the electrical
outputs of a gage are supplied as differences relative to its “natural zero”, i.e, relative to the electrical output
that the gage would have if the balance is in an assumed “weightless” condition.

The proof starts by comparing an approximation of the regression model of an output with the corre-
sponding regression model of a load. First, the regression model of the output, i.e., Eq. (4a), is simplified
after taking assumptions (I) and (V) into account. Then, it is reasonable to assume that (i) the intercept
term is negligible and (ii) only the primary load and one additional regression model term make significant
contributions on the right–hand side of Eq. (4a). Consequently, the following approximation of the regression
model of an output can be made:

Wk ≈ ak,k · Fk + aη,k · ξ(Wk) (7a)

Then, after dividing both sides of Eq. (7a) above by the first term on the right–hand side, we get:

Wk

ak,k · Fk
≈ 1 +

aη,k · ξ(Wk)

ak,k · Fk
(7b)

We also know that the regression model term ak,k is the partial derivative of the primary output Wk

with respect to the primary load Fk. Then, we can write:

ak,k =
∂ Wk

∂ Fk
(7c)

Now, after using (i) the right–hand side of Eq. (7c) to replace ak,k on the left–hand side of Eq. (7b) and
(ii) multiplying both sides of the resulting equation by 100 %, we get:

Wk

(∂Wk/∂Fk) · Fk
· 100 % ≈ 100 % +

aη,k · ξ(Wk)

ak,k · Fk
· 100 % (7d)

The last term on the right–hand side of Eq. (7d) becomes the percent contribution P [ξ(Wk)] of the term
ξ(Wk) of the regression model of the output Wk if the capacities of related variables (Fk

?,Wk
?,∆T ?) are

used on both sides of the equation. Then, Eq. (7d) can be written as follows:

Wk
?

(∂Wk/∂Fk) · Fk?
· 100 % ≈ 100 % + P [ξ(Wk)] (7e)

The numerator and the denominator of the fraction on the left–hand side of Eq. (7e) above are identical
because the numerator can be replaced by the right–hand side of Eq. (6) of the body of the text. Therefore,
the fraction on the left–hand side of Eq. (7e) equals “one” and we get the following simplification of Eq. (7e):

100 % ≈ 100 % + P [ξ(Wk)] (7f)

Similarly, the regression model of a load, i.e., Eq. (5a), can be simplified. Again, it is reasonable to
assume that (i) the intercept term is negligible and (ii) only the primary output and one additional regression
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model term make significant contributions on the right–hand side of Eq. (5a) if assumptions (I) and (V)
listed in the first paragraph of the appendix are taken into account. Then, the following approximation of
the regression model of a load is valid:

Fk ≈ bk,k ·Wk + bη,k · ξ(Fk) (8a)

Now, after dividing both sides of Eq. (8a) above by the first term on the right–hand side, we get:

Fk
bk,k · Wk

≈ 1 +
bη,k · ξ(Fk)

bk,k · Wk
(8b)

We also know that the regression model term bk,k is the partial derivative of the primary load Fk with
respect to the primary output Wk. Then, we can write:

bk,k =
∂ Fk
∂ Wk

(8c)

Then, after using (i) the right–hand side of Eq. (8c) to replace bk,k on the left–hand side of Eq. (8b) and
(ii) multiplying both sides of the resulting equation by 100 %, we get:

Fk
(∂Fk/∂Wk) · Wk

· 100 % ≈ 100 % +
bη,k · ξ(Fk)

bk,k ·Wk
· 100 % (8d)

The last term on the right–hand side of Eq. (8d) becomes the percent contribution Q[ξ(Fk)] of the term
ξ(Fk) of the regression model of the load Fk if the capacities of related variables (Fk

?,Wk
?,∆T ?) are used

on both sides of the equation. Then, Eq. (8d) can be written as follows:

Fk
?

(∂Fk/∂Wk) · Wk
? · 100 % ≈ 100 % + Q[ξ(Fk)] (8e)

We also know that

(∂Fk/∂Wk) = 1 / (∂Wk/∂Fk) (8f)

Then, after replacing the partial derivative on the left–hand–side of Eq. (8e) with the right–hand side
of Eq. (8f), we get the following result for Eq. (8e):

(∂Wk/∂Fk) · Fk?

Wk
? · 100 % ≈ 100 % + Q[ξ(Fk)] (8g)

The numerator and denominator of the fraction on the left–hand side of Eq. (8g) above are identical
because the denominator can be replaced by the right–hand side of Eq. (6) of the body of the text. Therefore,
the fraction on the left–hand side of Eq. (8g) equals one and we get the following simplification of Eq. (8g):

100 % ≈ 100 % + Q[ξ(Fk)] (8h)

In the next step, after multiplying the left– and right–hand sides of Eq. (7f) with the left– and right–
hand sides of Eq. (8h), we get:

(100 %)2 ≈
[

100 % + P [ξ(Wk)]
]
·
[

100 % + Q[ξ(Fk)]
]

(9)

In addition, after expanding the brackets on the right–hand side of Eq. (9), we get:

(100 %)
2 ≈ (100 %)

2
+ 100 % · P [ξ(Wk)] + 100 % · Q[ξ(Fk)] + P [ξ(Wk)] · Q[ξ(Fk)] (10)
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Equation (10) can be simplified further after (i) the square of 100 % is subtracted from both sides of
the equation and (ii) the result is divided by 100 %. Then, we get

0 ≈ P [ξ(Wk)] + Q[ξ(Fk)] +
P [ξ(Wk)] · Q[ξ(Fk)]

100 %
(11)

Now, after (i) subtracting P [ξ(Wk)] from both sides of the Eq. (11) and (ii) extracting the common
multiplier Q[ξ(Fk)] of the last two terms on the right–hand side of the Eq. (11), we get:

−P [ξ(Wk)] ≈ Q[ξ(Fk)] ·
[

1 +
P [ξ(Wk)]

100 %

]
(12)

It is known from experience that the magnitude of the percent contribution for the vast majority of
regression model terms of real–world balance data is on the order of -or- less than the conservative threshold
of 10 % if a balance has highly linear behavior and the metric is not computed for the term that is defined by
the primary output or the primary load itself (see also assumption (IV) that is listed in the first paragraph
of the appendix). This observation can be described as follows:

| P [ξ(Wk)] | ≤ 10 % (13)

The absolute value of the percent contribution must be used on the left–hand side of the inequality
above because the percent contribution is either a positive or negative quantity. Now, after using the above
inequality in order to simplify the contents of the bracket on the right–hand side of Eq. (12), we get:[

1 +
P [ξ(Wk)]

100 %

]
≈ 1 ± 10 %

100 %
≈ 1 ± 0.1 ≈ 1 (14)

Finally, after replacing the bracket on the right–hand side of Eq. (12) by the value of “1”, i.e., by the
approximation that is derived in Eq. (14), we get the following relationship between the percent contribution
of a regression model term of the primary output and the percent contribution of the related regression
model term of the primary load:

−P [ξ(Wk)] ≈ Q[ξ(Fk)] (15)

The final result given in Eq. (15) above confirms the authors’ observation that the percent contri-
butions P [ξ(Wk)] and Q[ξ(Fk)] of related terms of the regression models of the outputs and loads are
similar in magnitude but opposite in sign. This result is valid for the percent contributions of most regres-
sion model terms of balance data and not just for the percent contributions of temperature–dependent terms
as long as the absolute value of the percent contribution of a term is on the order of 10 % or less.
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