Abstract

This chapter summarizes the most representative software packages that readily allow running Monte Carlo (MC) simulations in relevant scenarios for drug design. It explores in detail the Protein Energy Landscape Exploration (PELE) program, providing first the main characteristics of the technique, followed by an analysis of the different application studies in mapping protein‐ligand interactions. The ligand, formed by a rigid core and a set of rotatable side chains, is perturbed by translating and rotating it. PELE creates a list of perturbation poses, and then chooses the one with the lowest system energy. PELE was originally designed to map ligand migration pathways: its first applications aimed at finding exit pathways starting from ligand‐bound crystallographic structures. Additional applied studies have centered on modeling enzymatic mechanisms and engineering; the same techniques applied in mapping protein‐drug interactions can be used in the study of substrate recognition by enzymes.Along the development of PELE in the last years, we gratefully acknowledge financial support from the European Union (in particular from the ERC program) and from the Catalan and Spanish Governments. In addition we want to thank all present and past members from the EAPM lab. at BSC for their dedication and work.Peer ReviewedPostprint (author's final draft

    Similar works