Olfaction is a primitive sense in organisms. Both vertebrates and insects have
receptors for detecting odor molecules in the environment, but the evolutionary
origins of these genes are different. Among studied vertebrates, mammals have
∼1,000 olfactory receptor (OR) genes, whereas teleost fishes have much
smaller (∼100) numbers of OR genes. To investigate the origin and
evolution of vertebrate OR genes, I attempted to determine near-complete OR gene
repertoires by searching whole-genome sequences of 14 nonmammalian chordates,
including cephalochordates (amphioxus), urochordates (ascidian and larvacean),
and vertebrates (sea lamprey, elephant shark, five teleost fishes, frog, lizard,
and chicken), followed by a large-scale phylogenetic analysis in conjunction
with mammalian OR genes identified from nine species. This analysis showed that
the amphioxus has >30 vertebrate-type OR genes though it lacks
distinctive olfactory organs, whereas all OR genes appear to have been lost in
the urochordate lineage. Some groups of genes (θ, κ, and
λ) that are phylogenetically nested within vertebrate OR genes showed
few gene gains and losses, which is in sharp contrast to the evolutionary
pattern of OR genes, suggesting that they are actually non-OR genes. Moreover,
the analysis demonstrated a great difference in OR gene repertoires between
aquatic and terrestrial vertebrates, reflecting the necessity for the detection
of water-soluble and airborne odorants, respectively. However, a minor group
(β) of genes that are atypically present in both aquatic and
terrestrial vertebrates was also found. These findings should provide a critical
foundation for further physiological, behavioral, and evolutionary studies of
olfaction in various organisms