Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics

Abstract

Moenomycin inhibits bacterial growth by blocking the transglycosylase activity of class A penicillin-binding proteins (PBPs), which are key enzymes in bacterial cell wall synthesis. We compared the binding affinities of moenomycin A with various truncated PBPs by using surface plasmon resonance analysis and found that the transmembrane domain is important for moenomycin binding. Full-length class A PBPs from 16 bacterial species were produced, and their binding activities showed a correlation with the antimicrobial activity of moenomycin against Enterococcus faecalis and Staphylococcus aureus. On the basis of these findings, a fluorescence anisotropy-based high-throughput assay was developed and used successfully for identification of transglycosylase inhibitors

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019