16,260 research outputs found

    Review Of The Microbial Models Of Molecular Biology: From Genes To Genomes By R. H. Davis

    Get PDF

    From the Circumnuclear Disk in the Galactic Center to thick, obscuring tori of AGNs

    Full text link
    We compare three different models of clumpy gas disk and show that the Circumnuclear Disk (CND) in the Galactic Center and a putative, geometrically thick, obscuring torus are best explained by a collisional model consisting of quasi-stable, self-gravitating clouds. Kinetic energy of clouds is gained by mass inflow and dissipated in cloud collisions. The collisions give rise to a viscosity in a spatially averaged gas dynamical picture, which connects them to angular momentum transport and mass inflow. It is found that CND and torus share the same gas physics in our description, where the mass of clouds is 20 - 50 M_sun and their density is close to the limit of disruption by tidal shear. We show that the difference between a transparent CND and an obscuring torus is the gas mass and the velocity dispersion of the clouds. A change in gas supply and the dissipation of kinetic energy can turn a torus into a CND-like structure and vice versa. Any massive torus will naturally lead to sufficiently high mass accretion rates to feed a luminous AGN. For a geometrically thick torus to obscure the view to the center even super-Eddington accretions rates with respect to the central black hole are required.Comment: 9 pages, no figures. Accepted for publication in A&

    Deep HI observations of the surroundings of ram pressure stripped Virgo spiral galaxies - Where is the stripped gas?

    Get PDF
    Deep Effelsberg 100-m HI observations of 5 HI deficient Virgo spiral galaxies are presented. No new extended HI tail is found in these galaxies. The already known HI tail north of NGC 4388 does not significantly extend further than a WSRT image has shown. Based on the absence of HI tails in a sample of 6 Virgo spiral galaxies and a balance of previous detections of extraplanar gas in the targeted galaxies we propose a global picture where the outer gas disk (beyond the optical radius R_25) is removed much earlier than expected by the classical ram pressure criterion. Based on the two-phase nature of atomic hydrogen located in a galactic disk, we argue that the warm diffuse HI in the outer galactic disk is evaporated much more rapidly than the cold dense HI. Therefore, after a ram pressure stripping event we can only observe atomic hydrogen which was cold and dense before it was removed from the galactic disk. This global picture is consistent with all available observations. We detect between 0.3% and 20% of the stripped mass assuming an initially non-deficient galaxy and between 3% and 70% of the stripped mass assuming an initially HI deficient galaxy (def=0.4). Under the latter assumption we estimate an evaporation rate by dividing the missing mass by the estimated time to peak ram pressure from dynamical simulations. We find evaporation rates between 10 and 100 M_solar/yr.Comment: 9 pages, 9 figures, accepted for publication in A&

    Ram pressure stripping in a viscous intracluster medium

    Full text link
    In the recent literature there is circumstantial evidence that the viscosity of the intracluster medium may not be too far from the Spitzer value. In this letter, we present two-dimensional hydrodynamical simulations of ram pressure stripping of disc galaxies in a viscous intracluster medium. The values of viscosity explored range between 0.1 and 1.0 times the Spitzer value. We find that viscosity affects the appearance and the dimensions of the galactic wakes but has very little effect on the evolution of the gas mass of the galaxy.Comment: 5 pages, 2 figures, accepted by MNRAS letter

    A holistic view on ram pressure stripping in the Virgo cluster - The first complete model-based time sequence

    Full text link
    Based on a comparison of dynamical models with observations of the interstellar gas in 6 Virgo cluster spiral galaxies a first complete ram pressure stripping time sequence has been established. The observational characteristics of the different stages of ram pressure stripping are presented. The dynamical models yield the 3D velocity vectors of the galaxies, peak ram pressures, and times to peak ram pressure. In the case of a smooth, static, and spherical intracluster medium, peak ram pressure occurs during the galaxy's closest approach to the cluster center, i.e. when the galaxy's velocity vector is perpendicular to its distance vector from the cluster center (M 87). Assuming this condition the galaxy's present line-of-sight distance and its 3D position during peak ram pressure can be calculated. The linear orbital segments derived in this way together with the intracluster medium density distribution derived from X-ray observations give estimates of the ram pressure that are on average a factor of 2 higher than derived from the dynamical simulations for NGC 4501, NGC 4330, and NGC 4569. Resolving this discrepancy would require either a 2 times higher intracluster medium density than derived from X-ray observations, or a 2 times higher stripping efficiency than assumed by the dynamical models. Compared to NGC 4501, NGC 4330, and NGC 4569, NGC 4388 requires a still 2 times higher local intracluster medium density or a direction which is moderately different from that derived from the dynamical model. A possible scenario for the dynamical evolution of NGC 4438 and M 86 within the Virgo cluster is presented.Comment: 10 pages, 5 figures; accepted for publication in A&

    Ram pressure stripping of the multiphase ISM in the Virgo cluster spiral galaxy NGC 4438

    Get PDF
    Ram pressure stripping of the multiphase ISM is studied in the perturbed Virgo cluster spiral galaxy NGC 4438. This galaxy underwent a tidal interaction ~100 Myr ago and is now strongly affected by ram pressure stripping. Deep VLA radio continuum observations at 6 and 20 cm are presented. We detect prominent extraplanar emission to the west of the galactic center, which extends twice as far as the other tracers of extraplanar material. The spectral index of the extraplanar emission does not steepen with increasing distance from the galaxy. This implies in situ re-acceleration of relativistic electrons. The comparison with multiwavelength observations shows that the magnetic field and the warm ionized interstellar medium traced by Halpha emission are closely linked. The kinematics of the northern extraplanar Halpha emission, which is ascribed to star formation, follow those of the extraplanar CO emission. In the western and southern extraplanar regions, the Halpha measured velocities are greater than those of the CO lines. We suggest that the ionized gas of this region is excited by ram pressure. The spatial and velocity offsets are consistent with a scenario where the diffuse ionized gas is more efficiently pushed by ram pressure stripping than the neutral gas. We suggest that the recently found radio-deficient regions compared to 24 mum emission are due to this difference in stripping efficiency.Comment: 8 pages, 6 figures, A&A, accepted for publicatio
    • …
    corecore