Abstract

We propose a mathematical formulation of the zeroth law of thermodynamics and develop a stochastic dynamical theory, with a consistent irreversible thermodynamics, for systems possessing sustained conservative stationary current in phase space while in equilibrium with a heat bath. The theory generalizes underdamped mechanical equilibrium: dx=gdt+{Dϕdt+2DdB(t)}dx=gdt+\{-D\nabla\phi dt+\sqrt{2D}dB(t)\}, with g=0\nabla\cdot g=0 and {}\{\cdots\} respectively representing phase-volume preserving dynamics and stochastic damping. The zeroth law implies stationary distribution uss(x)=eϕ(x)u^{ss}(x)=e^{-\phi(x)}. We find an orthogonality ϕg=0\nabla\phi\cdot g=0 as a hallmark of the system. Stochastic thermodynamics based on time reversal (t,ϕ,g)(t,ϕ,g)\big(t,\phi,g\big)\rightarrow\big(-t,\phi,-g\big) is formulated: entropy production ep#(t)=dF(t)/dte_p^{\#}(t)=-dF(t)/dt; generalized "heat" hd#(t)=dU(t)/dth_d^{\#}(t)=-dU(t)/dt, U(t)=Rnϕ(x)u(x,t)dxU(t)=\int_{\mathbb{R}^n} \phi(x)u(x,t)dx being "internal energy", and "free energy" F(t)=U(t)+Rnu(x,t)lnu(x,t)dxF(t)=U(t)+\int_{\mathbb{R}^n} u(x,t)\ln u(x,t)dx never increases. Entropy follows dSdt=ep#hd#\frac{dS}{dt}=e_p^{\#}-h_d^{\#}. Our formulation is shown to be consistent with an earlier theory of P. Ao. Its contradistinctions to other theories, potential-flux decomposition, stochastic Hamiltonian system with even and odd variables, Klein-Kramers equation, Freidlin-Wentzell's theory, and GENERIC, are discussed.Comment: 25 page

    Similar works

    Full text

    thumbnail-image

    Available Versions