We show, through modeling and simulation, that it is feasible to construct a
storage ring that will store dense bunches of strong-field-seeking polar
molecules at 30 m/s (kinetic energy of 2K) and hold them, for several minutes,
against losses due to defocusing, oscillations, and diffusion. The ring, 3 m in
diameter, has straight sections that afford access to the stored molecules and
a lattice structure that may be adapted for evaporative cooling. Simulation is
done using a newly-developed code that tracks the particles, in time, through
400 turns; it accounts for longitudinal velocity changes as a function of
external electric field, focusing and deflection nonlinearities, and the
effects of gravity. An injector, decelerator, and source are included and
intensities are calculated.Comment: 6 pages 5 figures, 3 table