5 research outputs found

    無線隨意網路下資料傳遞不間斷的傳遞架構

    Get PDF
    [[abstract]]無線隨意網路- Mobile Ad-Hoc Networks(MANETs)是由一群無固定基礎建設的行動通訊裝置集合而成。由於沒有固定的無線網路基礎建設,在傳遞資料上便顯得比較困難。而隨選路由通訊協定(On-Demand Routing Protocol)與表格驅動路由通訊協定(Table-Driven Routing Protocol)是二種有效的尋找路徑方法, 其中又以AODV、DSR、DSDV與ZRP都是最具代表性。然而,不論是隨選路由通訊協定或是表格驅動路由通訊協定都是專注在如何獲得有效的路由路徑,卻忽略了當路由失效時,重建路徑所浪費的時間與資源。 本文提出一種以預防性的備用路由(Backup Routing)方式,提出一種『需求驅動之門檻路由架構』(On-demandThreshold Routing Scheme, OTR),希望能改變路徑重新建立的過程,減少重建的成本並達到傳遞不間斷的資料傳遞。模擬與分析結果顯示,在不同模擬參數下,OTR的效能比AODV 提升約47.63%、53.68%,與63.36%的不見斷通訊時間

    A Study of Cluster-Based Routing in Wireless Ad Hoc Network

    No full text
    [[abstract]]Ad-Hoc 網路是由一群行動節點所組成的網路,節點之間的通訊不必透過基地台的轉接,所有通訊都是藉由彼此之間相互傳遞資料來達到溝通的目的,在一些無基地台支援的地區,例如戰場、災區等,這種網路模式就更顯得重要,在Ad-Hoc網路上主要會遇到的問題例如:動態拓樸的改變、頻寬、記憶體容量、電池,在這些資源有限的情況下,要如何有效率的利用這些資源是很重要的,路由在傳統有線網路上是個重要的研究議題,在Ad-Hoc網路上當然也不例外,目前在Ad-Hoc網路主要的路由方法有表格驅動式與需求驅動式,表格驅動式必須透過大量的控制訊息來維護路徑資訊,需求驅動式則是可以減少控制訊息和節省網路頻寬,可是在路徑取得上就不夠即時,如何有效的繞路來傳遞資料,在無線網路上是個重要的研究議題,本篇利用叢集架構的技術結合表格驅動式的優點,叢集與叢集之間透過叢集管理者利用表格驅動的方式來交換路由資訊,由於是經由叢集管理者來管理整個網路的路徑資訊,因此可以有效的減少封包的交換數量,在路徑取得上也有獲得改善。[[abstract]]Ad-Hoc network is formed by a group of nodes in the network operations, communication between nodes do not have to transit through the base station, all communications are through with each other to pass information to achieve the purpose of communication, Base stations in a number of non-support areas, such as battlefield, disaster, etc. This network model is all the more important, In the Ad-Hoc network will mainly encounter problems, such as: dynamic topology changes, bandwidth, memory capacity, battery, in these limited resources, how should be efficient use of these resources is very important , At present the main Ad-Hoc network routing method has the table-driven and demand-driven, Table-driven by a large number of control messages must be to maintain the path information, demand-driven is to reduce the control messages and save network bandwidth, but not on the path to achieve real-time, how effective detour to pass data, in wireless network is an important research topic, In this paper, table-driven technology combined with the use of cluster structure, cluster and between cluster head, through the use of table-driven clustering approach to exchange routing information, because after the cluster administrator to manage the entire network path information, in addition to routing information packets can be reduced exchange to the number of efficiency achieved in the path also been improved considerably

    無線隨意網路下資料傳遞不間斷的傳遞架構

    No full text
    [[abstract]]無線隨意網路-Mobile ad-Hoc networks (MANETs)是由一群無固定基礎建設的行動通訊裝置集合而成。由於沒有固定的無線網路基礎建設,在傳遞資料上便顯得比較困難。而隨選路由通訊協定(On-demand routing protocol)與表格驅動路由通訊協定(Table-driven routing protocol)是二種有效的尋找路徑方法,其中又以AODV、DSR、DSDV與ZRP都是最具代表性。然而,不論是隨選路由通訊協定或是表格驅動路由通訊協定都是專注在如何獲得有效的路由路徑,卻忽略了當路由失效時,重建路徑所浪費的時間與資源。本文提出一種以預防性的備用路由(Backup routing)方式,提出一種「需求驅動之門檻路由架構」(On-demand threshold routing scheme, OTR),希望能改變路徑重新建立的過程,減少重建的成本並達到傳遞不間斷的資料傳遞。模擬與分析結果顯示,在不同模擬參數下,OTR的效能比AODV提升約47.63%、53.68%,與63.36%的不見斷通訊時間。[[sponsorship]]亞洲大學資訊學院[[conferencetype]]國內[[conferencedate]]20071220~20071221[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]臺中, 臺

    [[alternative]]The architecture of data continued-transmission in mobile Ad-hoc networks

    No full text
    碩士[[abstract]]無線隨意網路 - Mobile Ad-Hoc Networks(MANETs)是由一群無固定基礎建設的行動通訊裝置集合而成,由於沒有固定的無線網路基礎建設,在傳遞資料上便顯得比較困難。而隨選路由通訊協定(On-Demand Routing Protocol)與表格驅動路由通訊協定(Table-Driven Routing Protocol)是二種有效的尋找路徑方法,Ad-hoc On-Demand Distance Vector Routing(AODV)、Dynamic Source Routing(DSR)、DSDV(Destination-Sequenced Distance-Vector Routing)與ZRP(Zone Routing Protocol)都是其中最具代表性的方法。然而,不論是隨選路由通訊協定或是表格驅動路由通訊協定都是專注在如何獲得有效的路由路徑,卻忽略了當路由失效時,重建路徑所浪費的時間與資源。 因為在無線隨意網路下裝置會隨意的移動,所以網路的拓樸會時常變化、一直的變化,也因此路由失效的機率將增加,使得路徑重建的次數也隨之升高,因此所浪費的路由重建時間與封包的傳遞是相當可觀的。而且當傳遞的資料是即時性的資料(Real time data)型態時,也會因為延遲時間的長短而出現問題,所以當傳遞資料時,中斷再傳遞的情形在無線隨意網路下常常發生,卻不是每種資料型態都可以接受的。 本文提出一種以預防性的備用路由(Backup Routing)方式,推測傳輸路由可能將要中斷或是Delay,而在中斷或Delay之前預先找好另一條路由路徑,並在發生中斷之前,改變原先的傳遞路徑到已經找到的備用路徑以達到資料的持續傳輸。經研究發現,同樣在五十個裝置而且通訊範圍是五十公尺的情況下,傳遞不斷訊的時間增加了47%,在通訊範圍增加至一百公尺時,傳遞不間斷的通訊時間增加53%,在通訊範圍增加至一百五十公尺時,傳遞不間斷的通訊時間增加63%。[[abstract]]In Mobile Ad Hoc Networks, On-Demand Routing Protocols are effective routing protocols. Ad-hoc On-Demand Distance Vector Routing (AODV) [1], Dynamic Source Routing (DSR)[2] , DSDV(Destination-Sequenced Distance-Vector Routing) and ZRP(Zone Routing Protocol)are the most typical methods. These methods are focus on how the routing path to find but ignore that when the routing path is invalid, the resource wasted in rerouting is very much, and may cause a delay. When we transmit important data packets, high transmission performance is necessary. So if we know the tolerance of the important data packets, we have to prevent the broken occur as best as we can. We provide a scheme, back routing on-demand, to prevent and delay or broken and search a new routing path On-Demand in advance. Before delay or broken, we can change the routing path in advance and expect to continue transmitting. And the scheme can extend the transmission time to not to break and improve the total transmission time. When the communication distance is 50 meters and total nodes are 50, the transmission time improves 47%. Extend to 100 meters, it improves 53% and it improves 63% when the one-hop distance extends to 150 meters. When the nodes increase, the transmission time improves better.[[tableofcontents]]目 錄 一、緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 10 1.3. 研究架構 10 二、文獻探討 11 2.1. AD-HOC ON-DEMAND DISTANCE VECTOR ROUTING(AODV) 14 2.2. DYNAMIC SOURCE ROUTING(DSR) 18 2.3. AODV與DSR之比較 22 三、實驗方法 25 3.1. 路由探索階段 25 3.2 資料傳遞階段 26 四、模擬與分析 30 五、結論 38 REFERENCE 40 圖 目 錄 圖 1. 主從式無線區域網路 2 圖 2. 無線隨意網路架構 3 圖 3. PROGAGATION OF RREQ IN AODV 16 圖 4. REVERSE PATH FORMATION. 17 圖 5. PATH OF THE RREP TO THE SOURCE IN AODV 17 圖6. BUILDING OF THE ROUTE RECORD DURING ROUTE DISCOVERY. 21 圖 7. PROGAGATION OF THE ROUTE REPLY WITH THE ROUTE RECORD. 21 圖 8. ROUTING DISCOVERY IN OTR. 26 圖 9. REROUTING. 28 圖 10. 較短的REROUTING PATH. 30 圖 11. 50 NODES IN 1000*1000 METERS 32 圖 12. 80 NODES IN 1000*1000 METERS. 33 圖 13. 100 NODES IN 10000*1000 METERS. 34 圖 14. COMMUNICATION DISTANCE IS 50 METERS. 35 圖 15. COMMUNICATION DISTANCE IS 100 METERS. 36 圖 16. COMMUNICATION DISTANCE IS 150 METERS. 36 表 目 錄 表 1. DSR與AODV的比較 23 表 2. THE TOLERANCE OF THE VOICE COMMUNICATION USERS 27 表 3. THE ACTION AFTER NODES SENDING OR RECEIVING 29 表 4. 模擬參考一覽表 31[[note]]學號: 693521196, 學年度: 9

    [[alternative]]The peer-to-peer discovery protocol for wireless sensor networks

    No full text
    碩士[[abstract]]目前無線通訊和電子技術的發展,已經有能力做出體積小、低成本、低耗電、可作短距離傳輸的多功能無線感測網路節點,且每個節點皆具有感測、運算和通訊的功能。因此,無線感測網路的應用範圍將非常廣泛,例如:軍事、醫療、防災……等等;而針對不同之用途,僅須更換感測裝置和適度調整通訊模式便可達成目的。在軍事偵測用途方面,其可以快速佈建網路和容錯能力以利軍事監控和目標定位。醫療方面,醫師可以藉特製的無線感測網路節點放在病人的適當位置,以了解病情;其它方面如:對特定區域佈建無線感測網路,以利倉儲盤點、貨物品管、監控災害的防治等等。因此,相信在不久的將來,我們一定可以看到無線感測網路的大量應用。無線感測網路必須要考量的設計重點如:容錯性、可延展性、價格、硬體、拓撲型態、工作環境、省電等等;其有別於傳統無線網路之型態,所以勢必要再加以研究開發出其適合的軟硬體架構、通訊協定、應用程式…等。 一般無線感測網路在感測資料收集之後只是將資料傳回收集點自身並不多做判斷資料的動作,資料匯集中心便是基地台。在分散式自主性無線感測網路中有各種能力與感測性質不一的無線感測網路節點,在無基地台的環境中要取得網路環境資訊以及與其他節點交換訊息難度相對提高。在未明白網路拓撲的情況下使用搜尋方法找到節點的路徑因為實際網路輸入/輸出暫存器的大小等等影響,所以並不一定是最佳路徑,所以我們在搜尋目標時會重新建立一條路徑回去以保障雙向路徑都是最佳路徑,並且讓節點之前以點對點的方式通訊,每個節點都可以扮演基地台的角色,可以避免因為基地台發生錯誤而導致整個網路無法動彈的情況發生。[[abstract]]Recent advances in wireless communications and electronics have enabled the development of low cost, low power, and multifunctional sensor nodes that are small in size and communication untethered in short distances. These tiny sensor nodes, which consist of sensing, data processing, and communicating components, leverage the idea of wireless sensor networks. The sensor networks can be used for various application areas, e.g., health, military, and home. In military, for example, the rapid deployment, self-organization, and fault tolerance characteristics make them a very promising sensing technique for surveillance, reconnaissance, and targeting systems. In health, sensor nodes can also be deployed to monitor patients. Some other commercial applications include managing inventory, monitoring product quality, and monitoring disaster areas. In the future, this wide range of application areas will make wireless sensor networks to be integral parts of our lives. Realization of wireless sensor networks needs to satisfy the constraints introduced by factors such as fault tolerance, scalability, cost, hardware, topology change, environment, and power consumption. Since above constraints are highly stringent and specific, new wireless ad hocnetworking techniques are required, e.g., the hardware and software architectures, communication protocols, application programs, etc. Our focus is not on the mechanical aspects of mobile sensor nodes – the sensor, power, motor, and wheels, etc. Instead, this integrated project focuses on designing and implementing the ADC/DAC circuit, baseband circuit, communication MAC protocols, routing strategies, embedded system, and so on, that are the core technologies of the wireless sensor network system. When sensor nodes collect sensing data, they will send data to the sink node and don’t judge the data in Wireless Sensor Networks. All of the sensing data will send to Base Station (BS). It’s difficult to obtain the network information and exchange messages with other nodes in distributed self-origination Wireless Sensor Networks. People often use search or routing protocol to find nodes and paths. When we understand the network topology, the paths may not be the best paths. To solving this problem, the node which is found will rebuild a new path to the original node. After the path set up, the nodes use Peer-to-Peer method to communication. Every node can play the role of BS. It can avoid BS crashing.[[tableofcontents]]目錄索引 中文摘要.....................................................................................................I 英文摘要...................................................................................................II 目錄索引..................................................................................................IV 圖目錄.....................................................................................................VII 表目錄......................................................................................................IX 第一章 緒論 1.1 前言..............................................................................................1 1.2 研究動機......................................................................................2 1.3 論文架構......................................................................................2 第二章 無線感測網路介紹 2.1 引言..............................................................................................3 2.2 無線感測器網路架構..................................................................5 2.3 無線感測器網路通訊協定簡介................................................10 第三章 點對點傳輸技術介紹 3.1簡介..............................................................................................16 3.2點對點傳輸技術..........................................................................17 3.2.1點對點傳輸技術的應用....................................................17 3.2.2點對點傳輸技術介紹........................................................18 第四章 無線網路路由技術介紹 4.1前言..............................................................................................27 4.2無線網路路由概敘......................................................................28 4.2.1表格驅動路由協定............................................................29 4.2.2需求式路由協定................................................................30 4.3按需式距離向量路由協定..........................................................31 4.3.1 AODV概要.......................................................................31 4.3.2路由探索............................................................................32 4.3.3路徑維護...........................................................................33 4.3.1.1Hello Message..........................................................34 4.3.3.2路徑錯誤訊息.........................................................34 第五章 無線感測網路中基於點對點傳輸協定之搜尋協定 5.1 前言............................................................................................36 5.2基本假設.......................................................................................36 5.3網路路由協定..............................................................................37 5.4基於點對點傳輸協定之搜尋機制..............................................38 5.4.1搜尋機制概敘....................................................................38 5.4.2網路動作管理機制............................................................42 5.4.3最佳路徑選擇....................................................................47 第六章 模擬環境與結果 6.1模擬環境......................................................................................50 6.2模擬結果.....................................................................................50 第七章 結論與未來方向 7.1結論..............................................................................................53 7.2未來方向......................................................................................53 圖目錄 圖2.1 無基礎架構的無線區域網路…………………………………..3 圖2.2 有基礎架構的無線區域網路………………………..…………4 圖2.3 無線感測網路環境... ………………………..…………………7 圖2.4 感測器的架構... ………………………..………………….……8 圖2.5 無線感測網路通訊協定架構…………..………………………8 圖3.1 Ping/Pong路由………………………...………………………21 圖3.2 Query/QueryHit/Push 路由..…………………………………..21 圖3.3 無中央控制點對點傳輸技術Gnutella模型..…………………21 圖3.4 典型的Freenet詢問次序模型.…………………………….…24 圖5.1 來源節點偵測超過臨界值送出RREQ…………………….…39 圖5.2 發現符合要求的目標節點…………………….………………40 圖5.3 節點收到RREQ後動作流程圖…………….…………………41 圖5.4 目標節點送RREQ建立路徑……………….…………………41 圖5.5 節點狀態圖……………….……………………………………42 圖5.6 路徑建立及資料傳送過程………………………….…………46 圖5.7 新節點欲取得相同感測資訊過程………………….…………47 圖5.8 最佳化演算法流程圖……………………………………………48 圖5.9 網路中已建立好之路徑……………………….………...……49 圖5.10 最佳化匯集後之路徑……………………………………………49 圖6.1 RREQ與RREP封包數量………………………………………51 圖6.2 使用總封包數量…………………………………………………52 圖6.3 建立路徑平均Hop Count………………………..………………52 表目錄 表2.1 目前國外各大知名大學研究所已開始研究的領域和網址......3 表2.2 IEEE 802.15.4的基本規格………..………………………..…12 表3.1 Guntella訊息說明………………..……………………………21 表5.1 RREQ封包格式………………..……………………………...37 表5.1 RREP封包格式………………..……………………………...38[[note]]學號: 692390023, 學年度: 9
    corecore