21 research outputs found

    A mixed reality telepresence system for collaborative space operation

    Get PDF
    This paper presents a Mixed Reality system that results from the integration of a telepresence system and an application to improve collaborative space exploration. The system combines free viewpoint video with immersive projection technology to support non-verbal communication, including eye gaze, inter-personal distance and facial expression. Importantly, these can be interpreted together as people move around the simulation, maintaining natural social distance. The application is a simulation of Mars, within which the collaborators must come to agreement over, for example, where the Rover should land and go. The first contribution is the creation of a Mixed Reality system supporting contextualization of non-verbal communication. Tw technological contributions are prototyping a technique to subtract a person from a background that may contain physical objects and/or moving images, and a light weight texturing method for multi-view rendering which provides balance in terms of visual and temporal quality. A practical contribution is the demonstration of pragmatic approaches to sharing space between display systems of distinct levels of immersion. A research tool contribution is a system that allows comparison of conventional authored and video based reconstructed avatars, within an environment that encourages exploration and social interaction. Aspects of system quality, including the communication of facial expression and end-to-end latency are reported

    With you – an experimental end-to-end telepresence system using video-based reconstruction

    Get PDF
    We introduce withyou, our telepresence research platform. A systematic explanation of the theory brings together the linked nature of non-verbal communication and how it is influenced by technology. This leads to functional requirements for telepresence, in terms of the balance of visual, spatial and temporal qualities. The first end-to-end description of withyou describes all major processes and the display and capture environment. This includes two approaches to reconstructing the human form in 3D, from live video. An unprecedented characterization of our approach is given in terms of the above qualities, and influences of approach. This leads to non-functional requirements in terms of number and place of cameras and the avoidance of a resultant bottlekneck. Proposals are given for improved distribution of processes across networks, computers, and multi-core CPU and GPU. Simple conservative estimation shows that both approaches should meet our requirements. One is implemented and shown to meet minimum and come close to desirable requirements

    Video based reconstruction system for mixed reality environments supporting contextualised non-verbal communication and its study

    Get PDF
    This Thesis presents a system to capture, reconstruct and render the three-dimensional form of people and objects of interest in such detail that the spatial and visual aspects of non-verbal behaviour can be communicated.The system supports live distribution and simultaneous rendering in multiple locations enabling the apparent teleportation of people and objects. Additionally, the system allows for the recording of live sessions and their playback in natural time with free-viewpoint.It utilises components of a video based reconstruction and a distributed video implementation to create an end-to-end system that can operate in real-time and on commodity hardware.The research addresses the specific challenges of spatial and colour calibration, segmentation and overall system architecture to overcome technical barriers, the requirement of domain specific knowledge to setup and generate avatars to a consistent high quality.Applications of the system include, but are not limited to, telepresence, where the computer generated avatars used in Immersive Collaborative Virtual Environments can be replaced with ones that are faithful of the people they represent and supporting researchers in their study of human communication such as gaze, inter-personal distance and facial expression.The system has been adopted in other research projects and is integrated with a mixed reality application where, during a live linkup, a three-dimensional avatar is streamed to multiple end-points across different countries

    Efficient 3D Reconstruction, Streaming and Visualization of Static and Dynamic Scene Parts for Multi-client Live-telepresence in Large-scale Environments

    Full text link
    Despite the impressive progress of telepresence systems for room-scale scenes with static and dynamic scene entities, expanding their capabilities to scenarios with larger dynamic environments beyond a fixed size of a few square-meters remains challenging. In this paper, we aim at sharing 3D live-telepresence experiences in large-scale environments beyond room scale with both static and dynamic scene entities at practical bandwidth requirements only based on light-weight scene capture with a single moving consumer-grade RGB-D camera. To this end, we present a system which is built upon a novel hybrid volumetric scene representation in terms of the combination of a voxel-based scene representation for the static contents, that not only stores the reconstructed surface geometry but also contains information about the object semantics as well as their accumulated dynamic movement over time, and a point-cloud-based representation for dynamic scene parts, where the respective separation from static parts is achieved based on semantic and instance information extracted for the input frames. With an independent yet simultaneous streaming of both static and dynamic content, where we seamlessly integrate potentially moving but currently static scene entities in the static model until they are becoming dynamic again, as well as the fusion of static and dynamic data at the remote client, our system is able to achieve VR-based live-telepresence at close to real-time rates. Our evaluation demonstrates the potential of our novel approach in terms of visual quality, performance, and ablation studies regarding involved design choices

    Telethrone : a situated display using retro-reflection basedmulti-view toward remote collaboration in small dynamic groups

    Get PDF
    This research identifies a gap in the tele-communication technology. Several novel technology demonstrators are tested experimentally throughout the research. The presented final system allows a remote participant in a conversation to unambiguously address individual members of a group of 5 people using non-verbal cues. The capability to link less formal groups through technology is the primary contribution. Technology-mediated communication is first reviewed, with attention to different supported styles of meetings. A gap is identified for small informal groups. Small dynamic groups which are convened on demand for the solution of specific problems may be called “ad-hoc”. In these meetings it is possible to ‘pull up a chair’. This is poorly supported by current tele-communication tools, that is, it is difficult for one or more members to join such a meeting from a remote location. It is also difficult for physically located parties to reorient themselves in the meeting as goals evolve. As the major contribution toward addressing this the ’Telethrone’ is introduced. Telethrone projects a remote user onto a chair, bringing them into your space. The chair seems to act as a situated display, which can support multi party head gaze, eye gaze, and body torque. Each observer knows where the projected user is looking. It is simpler to implement and cheaper than current comparable systems. The underpinning approach is technology and systems development, with regard to HCI and psychology throughout. Prototypes, refinements, and novel engineered systems are presented. Two experiments to test these systems are peer-reviewed, and further design & experimentation undertaken based on the positive results. The final paper is pending. An initial version of the new technology approach combined retro-reflective material with aligned pairs of cameras, and projectors, connected by IP video. A counterbalanced repeated measures experiment to analyse gaze interactions was undertaken. Results suggest that the remote user is not excluded from triadic poker game-play. Analysis of the multi-view aspect of the system was inconclusive as to whether it shows advantage over a set-up which does not support multi-view. User impressions from the questionnaires suggest that the current implementation still gives the impression of being a display despite its situated nature, although participants did feel the remote user was in the space with them. A refinement of the system using models generated by visual hull reconstruction can better connect eye gaze. An exploration is made of its ability to allow chairs to be moved around the meeting, and what this might enable for the participants of the meeting. The ability to move furniture was earlier identified as an aid to natural interaction, but may also affect highly correlated subgroups in an ad-hoc meeting. This is unsupported by current technologies. Repositioning of several onlooking chairs seems to support ’fault lines’. Performance constraints of the current system are explored. An experiment tests whether it is possible to judge remote participant eye gaze as the viewer changes location, attempting to address concerns raised by the first experiment in which the physical offsets of the IP cameras lenses from the projected eyes of the remote participants (in both directions), may have influenced perception of attention. A third experiment shows that five participants viewing a remote recording, presented through the Telethrone, can judge the attention of the remote participant accurately when the viewpoint is correctly rendered for their location in the room. This is compared to a control in which spatial discrimination is impossible. A figure for how many optically seperate retro-reflected segments is obtained through spatial anlysis and testing. It is possible to render the optical maximum of 5 independent viewpoints supporting an ’ideal’ meeting of 6 people. The tested system uses one computer at the meeting side of the exchange making it potentially deployable from a small flight case. The thesis presents and tests the utility of elements toward a system, and finds that remote users are in the conversation, spatially segmented with a view for each onlooker, that eye gaze can be reconnected through the system using 3D video, and that performance supports scalability up to the theoretical maximum for the material and an ideal meeting size

    Toward hyper-realistic and interactive social VR experiences in live TV scenarios

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Social Virtual Reality (VR) allows multiple distributed users getting together in shared virtual environments to socially interact and/or collaborate. This article explores the applicability and potential of Social VR in the broadcast sector, focusing on a live TV show use case. For such a purpose, a novel and lightweight Social VR platform is introduced. The platform provides three key outstanding features compared to state-of-the-art solutions. First, it allows a real-time integration of remote users in shared virtual environments, using realistic volumetric representations and affordable capturing systems, thus not relying on the use of synthetic avatars. Second, it supports a seamless and rich integration of heterogeneous media formats, including 3D scenarios, dynamic volumetric representation of users and (live/stored) stereoscopic 2D and 180º/360º videos. Third, it enables low-latency interaction between the volumetric users and a video-based presenter (Chroma keying), and a dynamic control of the media playout to adapt to the session’s evolution. The production process of an immersive TV show to be able to evaluate the experience is also described. On the one hand, the results from objective tests show the satisfactory performance of the platform. On the other hand, the promising results from user tests support the potential impact of the presented platform, opening up new opportunities in the broadcast sector, among others.This work has been partially funded by the European Union’s Horizon 2020 program, under agreement nº 762111 (VRTogether project), and partially by ACCIÓ, under agreement COMRDI18-1-0008 (ViVIM project). Work by Mario Montagud has been additionally funded by the Spanish Ministry of Science, Innovation and Universities with a Juan de la Cierva – Incorporación grant (reference IJCI-2017-34611). The authors would also like to thank the EU H2020 VRTogether project consortium for their relevant and valuable contributions.Peer ReviewedPostprint (author's final draft
    corecore