860 research outputs found

    Recombinant Watermelon (\u3cem\u3eCitrullus Lanatus\u3c/em\u3e) Hydroperoxide Lyase and Uses Thereof

    Get PDF
    Recombinant watermelon (Citrullus lanatus) hydroperoxide lyase protein, DNA sequences encoding the protein, vectors containing the DNA sequences and hosts containing the vectors are provided, together with methods for recombinantly producing watermelon hydroperoxide lyase, DNA sequences, vectors and hosts

    Recombinant Watermelon (\u3cem\u3eCitrullus Lanatus\u3c/em\u3e) Hydroperoxide Lyase and Uses Thereof

    Get PDF
    Recombinant watermelon (Citrullus lanatus) hydroperoxide lyase protein, DNA sequences encoding the protein, vectors containing the DNA sequences and hosts containing the vectors are provided, together with methods for recombinantly producing watermelon hydroperoxide lyase, DNA sequences, vectors and hosts

    Biological evaluation of 32 different essential oils against Acidovorax citrulli, with a focus on Cinnamomum verum essential oil

    Get PDF
    Bacterial fruit blotch (BFB) of watermelon caused by Acidovorax citrulli (ACC) is one of the most severe diseases of watermelon worldwide. Antibacterial activity of 32 essential oils (EOs) was evaluated against ACC using disk-diffusion assays. The oil from cinnamon exhibited the greatest antibacterial activity. Using gas chromatography-mass spectrometry (GC-MS), the major components of cinnamon oil were analyzed. Among the various components of cinnamon oil, benzaldehyde and cinnamaldehyde exhibited the effective antibacterial activities against ACC. The minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of benzaldehyde and cinnamaldehyde were measured using broth dilution assays. The MICs against ACC of benzaldehyde and cinnamaldehyde were 0.1 and 0.01% (v/v), respectively. The MBCs of benzaldehyde and cinnamaldehyde against ACC were 0.2 and 0.02% (v/v), respectively. Also, 0.2% (v/v) levels of cinnamon oil, benzaldehyde and cinnamaldehyde completely killed ACC cells artificially contaminating watermelon seeds. This study suggests that cinnamon oil and its bioactive components, benzaldehyde and cinnamaldehyde, have potential for application as natural agents for the prevention and treatment of BFB.Key words: Acidovorax citrulli, bacterial fruit blotch, cinnamon oil, essential oil

    Ultrasonic Cigarettes: Chemicals and Cytotoxicity Are Similar to Heated-Coil Pod-Style Electronic Cigarettes.

    Get PDF
    Our purpose was to test the hypothesis that ultrasonic cigarettes (u-cigarettes), which operate at relatively low temperatures, produce aerosols that are less harmful than heated-coil pod-style electronic cigarettes (e-cigarettes). The major chemicals in SURGE u-cigarette fluids and aerosols were quantified, their cytotoxicity and cellular effects were assessed, and a Margin of Exposure risk assessment was performed on chemicals in SURGE fluids. Four SURGE u-cigarette flavor variants ( Blueberry Ice, Watermelon Ice, Green Mint, and Polar Mint ) were evaluated. Flavor chemicals were quantified in fluids and aerosols using gas chromatography/mass spectrometry. Cytotoxicity and cell dynamics were assessed using the MTT assay, live-cell imaging, and fluorescence microscopy. WS-23 (a coolant) and total flavor chemical concentrations in SURGE were similar to e-cigarettes, while SURGE nicotine concentrations (13-19 mg/mL) were lower than many fourth generation e-cigarettes. Transfer efficiencies of dominant chemicals to aerosols in SURGE ranged from 44-100%. SURGE fluids and aerosols had four dominant flavor chemicals (\u3e1 mg/mL). Toxic aldehydes were usually higher in SURGE aerosols than in SURGE fluids. SURGE fluids and aerosols had aldehyde concentrations significantly higher than pod-style e-cigarettes. Chemical constituents, solvent ratios, and aldehydes varied among SURGE flavor variants. SURGE fluids and aerosols inhibited cell growth and mitochondrial reductases, produced attenuated and round cells, and depolymerized actin filaments, effects that depended on pod flavor, chemical constituents, and concentration. The MOEs for nicotine, WS-23, and propylene glycol were /day. Replacing the heating coil with a sonicator did not eliminate chemicals, including aldehydes, in aerosols or diminish toxicity in comparisons between SURGE and other e-cigarette pod products. The high concentrations of nicotine, WS-23, flavor chemicals, and aldehydes and the cytotoxicity of SURGE aerosols do not support the hypothesis that aerosols from u-cigarettes are less harmful than those from e-cigarettes

    Immunocytochemical Labeling of Enzymes in Low Temperature Embedded Plant Tissue: The Precursor of Glyoxysomal Malate Dehydrogenase is Located in the Cytosol of Watermelon Cotyledon Cells

    Get PDF
    The Lowicryl-technique in combination with protein A gold was used in order to localize the precursor of glyoxysomal malate dehydrogenase in watermelon cotyledons. Preservation of the antigen was evaluated by a preembedding technique in isolated organelles. The glyoxysomal malate dehydrogenase was localized in tissue sections by a postembedding technique. Antigens of glyoxysomal malate dehydrogenase were found in the glyoxysomal matrix and in the cytosol, whereas the endoplasmic reticulum was completely free of labeling. Controls are presented by preimmunserum, by a serum against various proteins of the glyoxysomal membrane and by application of cycloheximide in order to inhibit translation at cytosolic ribosomes. The results are compared with immunocytochemical localizations of other plant microbody enzymes and of plant storage proteins

    Level of Organochlorine pesticide residues in selected consumable vegetables commonly sold in Benin City Markets

    Get PDF
    This research studied the levels and human health risk assessment of pesticide residues in consumable vegetables such as watermelon, cucumber and onions commonly sold in Benin City markets. A total of twenty-five organochlorine pesticide (OCP) residues in these samples were analyzed using with gas chromatography- electron captured detector (ECD).The estimated acceptable daily intake (EADI) of gamma lindane concentration in fruit vegetable (watermelon, onions and cucumber) was determined based on European union (EU) and United States Agency of Toxic Substances and Disease Registry (ATSDR) standards, using two population age groups (child and adult). The results revealed the levels of organochlorine pesticide residues among the fruit vegetables (watermelon, onions and cucumber). Gamma lindane had the highest value of 0.0002mg/kg among the OCP residues detected in fruit vegetable (watermelon). Onions and cucumber were below detection limit (0.00±0.00). The study, thus suggest that OCPs concentration (gamma lindane) in watermelon is unsafe for human. The study therefore calls for continuous monitoring of agricultural farmlands because continuous exposure to pesticide contaminated food products sold in Benin City markets (watermelon) could affect the health of consumers.Keywords: Pesticide residues, watermelon, cucumber, onion

    Influence of barley genetics on beer chemistry, flavor, and flavor stability

    Get PDF
    2017 Fall.Includes bibliographical references.In the brewing industry, identifying superior ingredients that provide distinct flavors is an important area of research. While the contribution of raw ingredients such as yeast and hops to flavor is well understood, it is currently unclear if different genotypes of barley provide unique flavor to beer. In brewing, barley is malted to provide saccharides and enzymes for fermentation, however the malt also contains thousands of metabolites that may influence flavor. The goals of this study were to determine (i) if there would be metabolite differences among six commercial barley genotypes, (ii) if differences in barley chemistry are reflected in the chemistry of the beer, (iii) if the differences in the beer chemistry impact sensory attributes of beer, through flavor and flavor stability, and (iv) if there are barley and/or malt metabolites that can be markers for beer flavor and/or flavor stability. Six distinct malts were brewed into six beers using a recipe designed to evaluate differences in flavor. The malts were derived from the barley genotypes: Copeland, Expedition, Full Pint, Meredith, Metcalfe and PolarStar were grown and malted in either Canada or the U.S. Metabolomics was used to characterize chemical variation among the six malts and beers using RP-UHPLC-MS, HILIC-MS (non-volatile metabolites), HS/SPME-GC-MS (volatiles), and ICP-MS (metals). The metabolomics analysis detected 5,042 compounds in malt, and 217 were annotated as known metabolites and included amines (20 metabolites), amino acids (36), fatty acids/lipids (40), sugars (11), phenols (30), and others (80). A total of 4,568 compounds were detected in beer and included 246 annotated metabolites and included amines (9), amino acids (37), fatty acids/lipids/fatty acyls (28), sugars (10), phenols (20), esters (89), aldehydes (21), others (31). The chemical profiles of the six malts and beers were evaluated for metabolite variation using principal component analysis (PCA) and analysis of variance (ANOVA). Principal component analysis was conducted on the annotated metabolites and demonstrated that each of the six malts and beers contained unique chemical profiles. ANOVA characterized 150/217 malt metabolites (69.1%) and 150/246 beer metabolites (60.9%) varied among genotype (ANOVA, FDR adjusted p < 0.05). The six beers were evaluated for flavor using a modified Quantitative Descriptive Analysis® (QDA) for 45 sensory traits at 0, 4, and 8 weeks of storage at 13 °C. PCA characterized flavor differences among the six beers at 8 weeks and Full Pint was described as fruity and Meredith as corn chip. The metabolite and sensory data were integrated using two approaches: Spearman's correlation and two-way orthogonal projection to latent structures (O2PLS). The analyses revealed associations between fruity or corn chip flavor in beer with beer purines/pyrimidines, volatile ketones, amines, and phenolics; and malt lipids, saccharides, phenols, amines, and alkaloids. Taken together, these data support a role of barley metabolites in beer flavor and flavor stability. As a raw ingredient, malted barley genotypes should be evaluated for a contribution to flavor, and this may be a future target for plant breeding efforts to selectively improve flavor and flavor stability quality in beer

    Cloning and characterization of a 9-lipoxygenase gene induced by pathogen attack from Nicotiana benthamiana for biotechnological application

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant lipoxygenases (LOXs) have been proposed to form biologically active compounds both during normal developmental stages such as germination or growth as well as during responses to environmental stress such as wounding or pathogen attack. In our previous study, we found that enzyme activity of endogenous 9-LOX in <it>Nicotiana benthamiana </it>was highly induced by agroinfiltration using a tobacco mosaic virus (TMV) based vector system.</p> <p>Results</p> <p>A <it>LOX </it>gene which is expressed after treatment of the viral vectors was isolated from <it>Nicotiana benthamiana</it>. As the encoded LOX has a high amino acid identity to other 9-LOX proteins, the gene was named as <it>Nb-9-LOX</it>. It was heterologously expressed in yeast cells and its enzymatic activity was characterized. The yeast cells expressed large quantities of stable 9-LOX (0.9 U ml<sup>-1 </sup>cell cultures) which can oxygenate linoleic acid resulting in high yields (18 μmol ml<sup>-1 </sup>cell cultures) of hydroperoxy fatty acid. The product specificity of Nb-9-LOX was examined by incubation of linoleic acid and Nb-9-LOX in combination with a 13-hydroperoxide lyase from watermelon (Cl-13-HPL) or a 9/13-hydroperoxide lyase from melon (Cm-9/13-HPL) and by LC-MS analysis. The result showed that Nb-9-LOX possesses both 9- and 13-LOX specificity, with high predominance for the 9-LOX function. The combination of recombinant Nb-9-LOX and recombinant Cm-9/13-HPL produced large amounts of C<sub>9</sub>-aldehydes (3.3 μmol mg<sup>-1 </sup>crude protein). The yield of C<sub>9</sub>-aldehydes from linoleic acid was 64%.</p> <p>Conclusion</p> <p>The yeast expressed Nb-9-LOX can be used to produce C<sub>9</sub>-aldehydes on a large scale in combination with a <it>HPL </it>gene with 9-HPL function, or to effectively produce 9-hydroxy-10(<it>E</it>),12(<it>Z</it>)-octadecadienoic acid in a biocatalytic process in combination with cysteine as a mild reducing agent.</p

    De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis.

    Get PDF
    BackgroundBixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes.ResultsIn order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds from B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924&nbsp;bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway.ConclusionThe identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana
    corecore