10,567 research outputs found

    Sonographic cervical volumetry in higher order multiple gestation

    Get PDF
    Objective:The aim of this study of multifetal pregnancies was the comparison of three-dimensional (3D) volumetry of the cervix, conventional sonographic cervical length measurement and clinical assessment. Methods 10 mothers were investigated in an observational study between 5/1999 and 9/2000. A total of 34 consecutive 2D-and 3D-transabdominal ultrasound measurements were performed. Results: Volumetry of the cervix was possible in all 34 exams. 2D-cervical length assessment could not be obtained in 6% because the presenting fetal part obstructed the sonographic plane. Both methods allowed equal judgement of the configuration of the cervix. A significant correlation was found between mean 2D-cervical length (28.7 mm, 7.7 SD) and mean cervical volume (30.0 cm(3), 16.0 SD). Parity, subjective preterm labor or need of tocolytics showed no correlation with any biometrical parameter studied. Conclusion: Volumetry was superior for the assessment of cervical biometry and conformation in women when the transabdominal 2D-plane was obstructed. When cervical length was obtainable by a conventional scan, the technically more complex 3D-imaging did not provide further information. Copyright (C) 2001 S. Karger AG, Basel

    Longitudinal grey and white matter changes in frontotemporal dementia and Alzheimer's disease

    Get PDF
    Behavioural variant frontotemporal dementia (bvFTD) and Alzheimer's disease (AD) dementia are characterised by progressive brain atrophy. Longitudinal MRI volumetry may help to characterise ongoing structural degeneration and support the differential diagnosis of dementia subtypes. Automated, observer-independent atlas-based MRI volumetry was applied to analyse 102 MRI data sets from 15 bvFTD, 14 AD, and 10 healthy elderly control participants with consecutive scans over at least 12 months. Anatomically defined targets were chosen a priori as brain structures of interest. Groups were compared regarding volumes at clinic presentation and annual change rates. Baseline volumes, especially of grey matter compartments, were significantly reduced in bvFTD and AD patients. Grey matter volumes of the caudate and the gyrus rectus were significantly smaller in bvFTD than AD. The bvFTD group could be separated from AD on the basis of caudate volume with high accuracy (79% cases correct). Annual volume decline was markedly larger in bvFTD and AD than controls, predominantly in white matter of temporal structures. Decline in grey matter volume of the lateral orbitofrontal gyrus separated bvFTD from AD and controls. Automated longitudinal MRI volumetry discriminates bvFTD from AD. In particular, greater reduction of orbitofrontal grey matter and temporal white matter structures after 12 months is indicative of bvFTD

    Deep grey matter volumetry as a function of age using a semi-automatic qMRI algorithm

    Full text link
    Quantitative Magnetic Resonance has become more and more accepted for clinical trial in many fields. This technique not only can generate qMRI maps (such as T1/T2/PD) but also can be used for further postprocessing including segmentation of brain and characterization of different brain tissue. Another main application of qMRI is to measure the volume of the brain tissue such as the deep Grey Matter (dGM). The deep grey matter serves as the brain's "relay station" which receives and sends inputs between the cortical brain regions. An abnormal volume of the dGM is associated with certain diseases such as Fetal Alcohol Spectrum Disorders (FASD). The goal of this study is to investigate the effect of age on the volume change of the dGM using qMRI. Thirteen patients (mean age= 26.7 years old and age range from 0.5 to 72.5 years old) underwent imaging at a 1.5T MR scanner. Axial images of the entire brain were acquired with the mixed Turbo Spin-echo (mixed -TSE) pulse sequence. The acquired mixed-TSE images were transferred in DICOM format image for further analysis using the MathCAD 2001i software (Mathsoft, Cambridge, MA). Quantitative T1 and T2-weighted MR images were generated. The image data sets were further segmented using the dual-space clustering segmentation. Then volume of the dGM matter was calculated using a pixel counting algorithm and the spectrum of the T1/T2/PD distribution were also generated. Afterwards, the dGM volume of each patient was calculated and plotted on scatter plot. The mean volume of the dGM, standard deviation, and range were also calculated. The result shows that volume of the dGM is 47.5 ±5.3ml (N=13) which is consistent with former studies. The polynomial tendency line generated based on scatter plot shows that the volume of the dGM gradually increases with age at early age and reaches the maximum volume around the age of 20, and then it starts to decrease gradually in adulthood and drops much faster in elderly age. This result may help scientists to understand more about the aging of the brain and it can also be used to compare with the results from former studies using different techniques

    Automated hippocampal segmentation in patients with epilepsy: Available free online

    Get PDF
    Hippocampal sclerosis, a common cause of refractory focal epilepsy, requires hippocampal volumetry for accurate diagnosis and surgical planning. Manual segmentation is time-consuming and subject to interrater/intrarater variability. Automated algorithms perform poorly in patients with temporal lobe epilepsy. We validate and make freely available online a novel automated method

    Correlations of Behavioral Deficits with Brain Pathology Assessed through Longitudinal MRI and Histopathology in the R6/2 Mouse Model of HD

    Get PDF
    Huntington's disease (HD) is caused by the expansion of a CAG repeat in the huntingtin (HTT) gene. The R6/2 mouse model of HD expresses a mutant version of exon 1 HTT and develops motor and cognitive impairments, a widespread huntingtin (HTT) aggregate pathology and brain atrophy. Despite the vast number of studies that have been performed on this model, the association between the molecular and cellular neuropathology with brain atrophy, and with the development of behavioral phenotypes remains poorly understood. In an attempt to link these factors, we have performed longitudinal assessments of behavior (rotarod, open field, passive avoidance) and of regional brain abnormalities determined through magnetic resonance imaging (MRI) (whole brain, striatum, cortex, hippocampus, corpus callosum), as well as an end-stage histological assessment. Detailed correlative analyses of these three measures were then performed. We found a gender-dependent emergence of motor impairments that was associated with an age-related loss of regional brain volumes. MRI measurements further indicated that there was no striatal atrophy, but rather a lack of striatal growth beyond 8 weeks of age. T2 relaxivity further indicated tissue-level changes within brain regions. Despite these dramatic motor and neuroanatomical abnormalities, R6/2 mice did not exhibit neuronal loss in the striatum or motor cortex, although there was a significant increase in neuronal density due to tissue atrophy. The deposition of the mutant HTT (mHTT) protein, the hallmark of HD molecular pathology, was widely distributed throughout the brain. End-stage histopathological assessments were not found to be as robustly correlated with the longitudinal measures of brain atrophy or motor impairments. In conclusion, modeling pre-manifest and early progression of the disease in more slowly progressing animal models will be key to establishing which changes are causally related. © 2013 Rattray et al
    • …
    corecore