68,845 research outputs found

    Mount St. Helens, Washington

    Get PDF
    This resource about Mount St. Helens, a stratovolcano in the Cascade Range best known for its violent eruption in 1980, features links to all aspects of the volcano, including real time, online video cam and current seismicity, its geographic setting, and geologic and eruptive history. Students learn of an eruption in 1800 as well as extensive details of the 1980 event. Links labeled 'Special Items of Interest' include information about volcanic highlights and features, points of interest, and Lewis and Clark information, which includes the sighting of Mount St. Helens. Other links lead to maps, graphics, images, publications, reports, and other items of interest involving this volcano and others. Educational levels: High school, Middle school

    Deep drilling into a Hawaiian volcano

    Get PDF
    Hawaiian volcanoes are the most comprehensively studied on Earth. Nevertheless, most of the eruptive history of each one is inaccessible because it is buried by younger lava flows or is exposed only below sea level. For those parts of Hawaiian volcanoes above sea level, erosion typically exposes only a few hundred meters of buried lavas (out of a total thickness of up to 10 km or more).Available samples of submarine lavas extend the time intervals of individual volcanoes that can be studied. However, the histories of individual Hawaiian volcanoes during most of their ~1-million-year passages across the zone of melt production are largely unknown

    Les pièges de la reconstitution des topographies d’érosion initiales fondée sur les vestiges des maars et diatrèmes volcaniques

    Get PDF
    Erosion estimates based on geometrical dimension measurements of eroded maar/diatreme volcanoes are useful methods to determine syn-volcanic surface level and syn-volcanic bedrock stratigraphy. However, such considerations on volcanic architecture should only be employed as a first-order approach to determine the state of erosion. We demonstrate, on both young and eroded maar/diatreme volcanoes, that establishing the volcanic facies architecture gives vital information on the environment in which the volcano erupted. In ‘soft’ rocks, maar volcanoes are broad and underlain by ‘champagne glass’-shaped diatremes. In contrast, the crater wall of maar volcanoes that erupted through ‘hard rocks’ will be steep, filled with lacustrine volcaniclastic deposits and underlain by deep diatremes

    Fluvial valleys on Martian volcanoes

    Get PDF
    Channels and valleys were known on the Martian volcanoes since their discovery by the Mariner 9 mission. Their analysis has generally centered on interpretation of possible origins by fluvial, lava, or viscous flows. The possible fluvial dissection of Martian volcanoes has received scant attention in comparison to that afforded outflow, runoff, and fretted channels. Photointerpretative, mapping, and morphometric studies of three Martian volcanoes were initiated: Ceraunius Tholus, Hecate Tholus, and Alba Patera. Preliminary morphometric results indicate that, for these three volcanoes, valley junction angles increase with decreasing slope. Drainage densities are quite variable, apparently reflecting complex interactions in the landscape-forming factors described. Ages of the Martian volcanoes were recently reinterpreted. This refined dating provides a time sequence in which to evaluate the degradational forms. An anomaly has appeared from the initial study: fluvial valleys seem to be present on some Martian volcanoes, but not on others of the same age. Volcanic surfaces characterized only by high permeability lava flows may have persisted without fluvial dissection

    Ground survey of active Central American volcanoes in November - December 1973

    Get PDF
    The author has identified the following significant results. Thermal anomalies at two volcanoes, Santiaguito and Izalco, have grown in size in the past six months, based on repeated ground survey. Thermal anomalies at Pacaya volcano have became less intense in the same period. Large (500 m diameter) thermal anomalies exist at 3 volcanoes presently, and smaller scale anomalies are found at nine other volcanoes

    The Mars Millenium Project: Volcanoes on Earth and Mars (title provided or enhanced by cataloger)

    Get PDF
    This resource is part of a collection that compares the geology and weather of Earth and Mars. This particular page contrasts Hawaiian volcanoes with Mars volcanoes. A beginner version is also available. Educational levels: High school, Middle school, Undergraduate lower division

    Numerical modelling of mud volcanoes and their flows using constraints from the Gulf of Cadiz

    Get PDF
    It is estimated that the total number of submarine mud volcanoes is between 1000 and 100 000. Because many are associated with greenhouse gases, such as methane, it is argued that the global flux of these gases to the atmosphere from the world’s terrestrial and submarine mud volcanoes is highly significant. Clues to the processes forming submarine mud volcanoes can be found in variations to their height, shape, surface morphology, physical properties and internal structure. A model of isostatic compensation between the mud column and the sediment overlying the mud source is used to predict a depth to the mud reservoir beneath mud volcanoes. Once erupted, the general behaviour of an individual mud flow can be described and predicted using a viscous gravity-current model. The model shows that conical-shaped mud volcanoes comprise multiple, superimposed radial flows in which the thickness, eruption rate and speed of individual mud flows strongly depends on the viscosity, density and over-pressure of the erupted mud. Using these parameters, the model predicts the lowermost flows will be the oldest, thickest and have the greatest length of run-out while the uppermost flows will be the youngest, thinnest and shortest. This model is in contrast to more traditional models of stratiform mud volcano construction in which younger flows progressively bury older ones and travel furthest from the summit. Applying the model to the two mud volcanoes studied in the Gulf of Cadiz, quantitative estimates are derived for the depths to mud sources, exit and flow velocities, eruption duration and volume fluxes, flow thickness and conduit radii. For example, with an average kinematic viscosity of 1.5 m2 s?1 for the erupted mud, a density of 1.8×103 kg m?3 and a thickness for the youngest flows of about 0.5 m, the model predicts a lowermost flow thickness of 3.6 m, an average eruption duration of 7 h and a conduit radius of about 9 m. To construct a conical-shaped mud volcano of 260 m height, similar to those studied in the Gulf of Cadiz, is estimated to require a mud source at 4.6 km depth and a total of at least 100 individually erupted flows

    A new method for monitoring global volcanic activity

    Get PDF
    The ERTS Data Collection System makes it feasible for the first time to monitor the level of activity at widely separated volcanoes and to relay these data rapidly to one central office for analysis. While prediction of specific eruptions is still an evasive goal, early warning of a reawakening of quiescent volcanoes is now a distinct possibility. A prototypical global volcano surveillance system was established under the ERTS program. Instruments were installed in cooperation with local scientists on 15 volcanoes in Alaska, Hawaii, Washington, California, Iceland, Guatemala, El Salvador and Nicaragua. The sensors include 19 seismic event counters that count four different sizes of earthquakes and six biaxial borehole tiltmeters that measure ground tilt with a resolution of 1 microradian. Only seismic and tilt data are collected because these have been shown in the past to indicate most reliably the level of volcano activity at many different volcanoes. Furthermore, these parameters can be measured relatively easily with new instrumentation

    Volcanic features of Hawaii. A basis for comparison with Mars

    Get PDF
    Despite the difference in size Martian and Hawaiian volcanoes have numerous characteristics in common. Specific features such as lava channels, collapsed lava tubes, levees and flow fronts, all very common in Hawaii, are also abundant on the flanks of some of the Martian volcanoes. Striking differences also exist, such as the apparent lack of radial rift zones on some Martian volcanoes and the paucity of cinder and spatter cones. Some of the best photographs of Martian and Hawaiian volcanic features are presented. Descriptive legends are provided for each picture. An overview of the geological processes and structures depicted is included
    corecore