449,116 research outputs found
Human and murine IFIT1 proteins do not restrict infection of negative-sense RNA viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae families
UNLABELLED: Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed 5\u27-triphosphates (5\u27-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1 for 5\u27-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infected Ifit1(-/-) and wild-type control mice and primary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV], and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack of Ifit1 gene expression did not result in increased infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical between Ifit1(-/-) and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not inhibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oligonucleotides resembling the 5\u27 ends of IAV gene segments. The affinity for 5\u27-ppp RNA was approximately 10-fold lower than that for non-2\u27-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant restriction factor against negative-sense RNA viruses.
IMPORTANCE: Negative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly outbreaks in recent history. The host interferon response and induction of antiviral genes contribute to the control of infections by these viruses. IFIT1 is highly induced after virus infection and reportedly has antiviral activity against several RNA and DNA viruses. However, its role in restricting infection by negative-sense RNA viruses remains unclear. In this study, we evaluated the ability of IFIT1 to inhibit negative-sense RNA virus replication and pathogenesis both in vitro and in vivo. Detailed cell culture and animal studies demonstrated that IFIT1 is not a dominant restriction factor against three different families of negative-sense RNA viruses
Viral RNA at two stages of reovirus infection is required for the induction of necroptosis
Necroptosis, a regulated form of necrotic cell death, requires the activation of the RIP3 kinase. Here, we identify that infection of host cells with reovirus can result in necroptosis. We find that necroptosis requires sensing of the genomic RNA within incoming virus particles via cytoplasmic RNA sensors to produce type I interferon (IFN). While these events that occur prior to the de novo synthesis of viral RNA are required for the induction of necroptosis, they are not sufficient. The induction of necroptosis also requires late stages of reovirus infection. Specifically, efficient synthesis of double-stranded RNA (dsRNA) within infected cells is required for necroptosis. These data indicate that viral RNA interfaces with host components at two different stages of infection to induce necroptosis. This work provides new molecular details about events in the viral replication cycle that contribute to the induction of necroptosis following infection with an RNA virus. IMPORTANCE An appreciation of how cell death pathways are regulated following viral infection may reveal strategies to limit tissue destruction and prevent the onset of disease. Cell death following virus infection can occur by apoptosis or a regulated form of necrosis known as necroptosis. Apoptotic cells are typically disposed of without activating the immune system. In contrast, necroptotic cells alert the immune system, resulting in inflammation and tissue damage. While apoptosis following virus infection has been extensively investigated, how necroptosis is unleashed following virus infection is understood for only a small group of viruses. Here, using mammalian reovirus, we highlight the molecular mechanism by which infection with a dsRNA virus results in necroptosis
Cloned defective interfering influenza virus protects ferrets from pandemic 2009 influenza A virus and allows protective immunity to be established
Influenza A viruses are a major cause of morbidity and mortality in the human population, causing epidemics in the winter, and occasional worldwide pandemics. In addition there are periodic outbreaks in domestic poultry, horses, pigs, dogs, and cats. Infections of domestic birds can be fatal for the birds and their human contacts. Control in man operates through vaccines and antivirals, but both have their limitations. In the search for an alternative treatment we have focussed on defective interfering (DI) influenza A virus. Such a DI virus is superficially indistinguishable from a normal virus but has a large deletion in one of the eight RNAs that make up the viral genome. Antiviral activity resides in the deleted RNA. We have cloned one such highly active DI RNA derived from segment 1 (244 DI virus) and shown earlier that intranasal administration protects mice from lethal disease caused by a number of different influenza A viruses. A more cogent model of human influenza is the ferret. Here we found that intranasal treatment with a single dose of 2 or 0.2 µg 244 RNA delivered as A/PR/8/34 virus particles protected ferrets from disease caused by pandemic virus A/California/04/09 (A/Cal; H1N1). Specifically, 244 DI virus significantly reduced fever, weight loss, respiratory symptoms, and infectious load. 244 DI RNA, the active principle, was amplified in nasal washes following infection with A/Cal, consistent with its amelioration of clinical disease. Animals that were treated with 244 DI RNA cleared infectious and DI viruses without delay. Despite the attenuation of infection and disease by DI virus, ferrets formed high levels of A/Cal-specific serum haemagglutination-inhibiting antibodies and were solidly immune to rechallenge with A/Cal. Together with earlier data from mouse studies, we conclude that 244 DI virus is a highly effective antiviral with activity potentially against all influenza A subtypes
Growth of Pseudotypes of Vesicular Stomatitis Virus with N-Tropic Murine Leukemia Virus Coats in Cells Resistant to N-Tropic Viruses
Formation of pseudotypes between murine RNA tumor viruses and vesicular stomatitis virus (VSV) has been confirmed. Pseudotypes of VSV genomes coated by the surface envelope from an N-tropic tumor virus grew equally well in cells homozygous for either the Fv-1n or Fv-1b alleles. Therefore, the product of the Fv-1 locus, which restricts growth of murine RNA tumor viruses, must act on an intracellular aspect of tumor virus replication, a step after attachment and penetration
Radial distribution of RNA genome packaged inside spherical viruses
The problem of RNA genomes packaged inside spherical viruses is studied. The
viral capsid is modeled as a hollowed sphere. The attraction between RNA
molecules and the inner viral capsid is assumed to be non-specific and occurs
at the inner capsid surface only. For small capsid attraction, it is found that
monomer concentration of RNA molecules is maximum at the center of the capsid
to maximize their configurational entropy. For stronger capsid attraction, RNA
concentration peaks at some distance near the capsid. In the latter case, the
competition between the branching of RNA secondary struture and its adsorption
to the inner capsid results in the formation of a dense layer of RNA near
capsid surface. The layer thickness is a slowly varying (logarithmic) function
of the capsid inner radius. Consequently, for immediate strength of RNA-capsid
interaction, the amount of RNA packaged inside a virus is proportional to the
capsid {\em area} (or the number of proteins) instead of its volume. The
numerical profiles describe reasonably well the experimentally observed RNA
nucleotide concentration profiles of various viruses.Comment: 5 pages, 2 figures. Abstract, introduction rewritten. Comparison to
actual virus profiles added. Submitted to PR
RNA Viral Community in Human Feces: Prevalence of Plant Pathogenic Viruses
The human gut is known to be a reservoir of a wide variety of microbes, including viruses. Many RNA viruses are known to be associated with gastroenteritis; however, the enteric RNA viral community present in healthy humans has not been described. Here, we present a comparative metagenomic analysis of the RNA viruses found in three fecal samples from two healthy human individuals. For this study, uncultured viruses were concentrated by tangential flow filtration, and viral RNA was extracted and cloned into shotgun viral cDNA libraries for sequencing analysis. The vast majority of the 36,769 viral sequences obtained were similar to plant pathogenic RNA viruses. The most abundant fecal virus in this study was pepper mild mottle virus (PMMV), which was found in high concentrations—up to 10(9) virions per gram of dry weight fecal matter. PMMV was also detected in 12 (66.7%) of 18 fecal samples collected from healthy individuals on two continents, indicating that this plant virus is prevalent in the human population. A number of pepper-based foods tested positive for PMMV, suggesting dietary origins for this virus. Intriguingly, the fecal PMMV was infectious to host plants, suggesting that humans might act as a vehicle for the dissemination of certain plant viruses
Multiple effects of silymarin on the hepatitis C virus lifecycle
Silymarin, an extract from milk thistle (Silybum marianum), and its purified flavonolignans have been recently shown to inhibit hepatitis C virus (HCV) infection, both in vitro and in vivo. In the current study, we further characterized silymarin's antiviral actions. Silymarin had antiviral effects against hepatitis C virus cell culture (HCVcc) infection that included inhibition of virus entry, RNA and protein expression, and infectious virus production. Silymarin did not block HCVcc binding to cells but inhibited the entry of several viral pseudoparticles (pp), and fusion of HCVpp with liposomes. Silymarin but not silibinin inhibited genotype 2a NS5B RNA-dependent RNA polymerase (RdRp) activity at concentrations 5 to 10 times higher than required for anti-HCVcc effects. Furthermore, silymarin had inefficient activity on the genotype 1b BK and four 1b RDRPs derived from HCV-infected patients. Moreover, silymarin did not inhibit HCV replication in five independent genotype 1a, 1b, and 2a replicon cell lines that did not produce infectious virus. Silymarin inhibited microsomal triglyceride transfer protein activity, apolipoprotein B secretion, and infectious virion production into culture supernatants. Silymarin also blocked cell-to-cell spread of virus. CONCLUSION: Although inhibition of in vitro NS5B polymerase activity is demonstrable, the mechanisms of silymarin's antiviral action appear to include blocking of virus entry and transmission, possibly by targeting the host cell
Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins
Four complementation groups of temperature-sensitive (ts) mutants of Sindbis virus that fail to make RNA at the nonpermissive temperature are known, and we have previously shown that group F mutants have defects in nsP4. Here we map representatives of groups A, B, and G. Restriction fragments from a full-length clone of Sindbis virus, Toto1101, were replaced with the corresponding fragments from the various mutants. These hybrid plasmids were transcribed in vitro by SP6 RNA polymerase to produce infectious RNA transcripts, and the virus recovered was tested for temperature sensitivity. After each lesion was mapped to a specific region, cDNA clones of both mutants and revertants were sequenced in order to determine the precise nucleotide change responsible for each mutation. Synthesis of viral RNA and complementation by rescued mutants were also examined in order to study the phenotype of each mutation in a uniform genetic background. The single mutant of group B, ts11, had a defect in nsP1 (Ala-348 to Thr). All of the group A and group G mutants examined had lesions in nsP2 (Ala-517 to Thr in ts17, Cys-304 to Tyr in ts21, and Gly-736 to Ser in ts24 for three group A mutants, and Phe-509 to Leu in ts18 and Asp-522 to Asn in ts7 for two group G mutants). In addition, ts7 had a change in nsP3 (Phe-312 to Ser) which also rendered the virus temperature sensitive and RNA-. Thus, changes in any of the four nonstructural proteins can lead to failure to synthesize RNA at a nonpermissive temperature, indicating that all four are involved in RNA synthesis. From the results presented here and from previous results, several of the activities of the nonstructural proteins can be deduced. It appears that nsP1 may be involved in the initiation of minus-strand RNA synthesis. nsP2 appears to be involved in the initiation of 26S RNA synthesis, and in addition it appears to be a protease that cleaves the nonstructural polyprotein precursors. It may also be involved in shutoff of minus-strand RNA synthesis. nsP4 appears to function as the viral polymerase or elongation factor. The functions of nsP3 are as yet unresolved
Rapid bedside inactivation of Ebola virus for safe nucleic acid tests
Rapid bedside inactivation of Ebola virus would be a solution for the safety of medical and technical staff, risk containment, sample transport and high-throughput or rapid diagnostic testing during an outbreak. We show that the commercially available MagNA Pure lysis/binding buffer used for nucleic acid extraction inactivates Ebola virus. A rapid bedside inactivation method for nucleic acid tests is obtained by simply adding MagNA Pure lysis/binding buffer directly into vacuum blood collection EDTA-tubes using a thin needle and syringe prior to sampling. The ready-to-use inactivation vacuum tubes are stable for more than 4 months and Ebola virus RNA is preserved in the MagNA Pure lysis/binding buffer for at least 5 weeks independent of the storage temperature. We also show that Ebola virus RNA can be manually extracted from MagNA Pure lysis/binding buffer-inactivated samples using the QIAamp Viral RNA mini kit. We present an easy and convenient method for bedside inactivation using available blood collection vacuum tubes and reagents. We propose to use this simple method for fast, safe and easy bedside inactivation of Ebola virus for safe transport and routine nucleic acid detection
Analysis of multiply spliced transcripts in lymphoid tissue reservoirs of rhesus macaques infected with RT-SHIV during HAART.
Highly active antiretroviral therapy (HAART) can reduce levels of human immunodeficiency virus type 1 (HIV-1) to undetectable levels in infected individuals, but the virus is not eradicated. The mechanisms of viral persistence during HAART are poorly defined, but some reservoirs have been identified, such as latently infected resting memory CD4⁺ T cells. During latency, in addition to blocks at the initiation and elongation steps of viral transcription, there is a block in the export of viral RNA (vRNA), leading to the accumulation of multiply-spliced transcripts in the nucleus. Two of the genes encoded by the multiply-spliced transcripts are Tat and Rev, which are essential early in the viral replication cycle and might indicate the state of infection in a given population of cells. Here, the levels of multiply-spliced transcripts were compared to the levels of gag-containing RNA in tissue samples from RT-SHIV-infected rhesus macaques treated with HAART. Splice site sequence variation was identified during development of a TaqMan PCR assay. Multiply-spliced transcripts were detected in gastrointestinal and lymphatic tissues, but not the thymus. Levels of multiply-spliced transcripts were lower than levels of gag RNA, and both correlated with plasma virus loads. The ratio of multiply-spliced to gag RNA was greatest in the gastrointestinal samples from macaques with plasma virus loads <50 vRNA copies per mL at necropsy. Levels of gag RNA and multiply-spliced mRNA in tissues from RT-SHIV-infected macaques correlate with plasma virus load
- …
