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ABSTRACT 24 

Necroptosis, a regulated form of necrotic cell death requires the activation of the 25 

RIP3 kinase. Here, we identify that infection of host cells with reovirus can result 26 

in necroptosis. We find that necroptosis requires sensing of the genomic RNA 27 

within incoming virus particles via cytoplasmic RNA sensors to produce type I 28 

IFN. While these events that occur prior to de novo synthesis of viral RNA are 29 

required for induction of necroptosis, they are not sufficient. Induction of 30 

necroptosis also requires late stages of reovirus infection. Specifically, efficient 31 

synthesis of dsRNA within infected cells is required for necroptosis. These data 32 

indicate that viral RNA interfaces with host components at two different stages of 33 

infection to induce necroptosis. This work provides new molecular details about 34 

events in the viral replication cycle that contribute to the induction of necroptosis 35 

following infection with an RNA virus.  36 
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IMPORTANCE 37 

An appreciation of how cell death pathways are regulated following viral infection 38 

may reveal strategies to limit tissue destruction and prevent the onset of disease. 39 

Cell death following virus infection can occur by apoptosis or a regulated form of 40 

necrosis, known as necroptosis. Apoptotic cells are typically disposed of without 41 

activating the immune system. In contrast, necroptotic cells alert the immune 42 

system, resulting in inflammation and tissue damage. While apoptosis following 43 

virus infection has been extensively investigated, how necroptosis is unleashed 44 

following virus infection is only understood for a small group of viruses. Here, 45 

using mammalian reovirus, we highlight the molecular mechanism by which 46 

infection with a dsRNA virus results in necroptosis.   47 
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INTRODUCTION 48 

Host cell death is a common outcome of virus infection (1). One form of 49 

cell death, necroptosis, has been described following infection with influenza A 50 

virus (IAV), herpes simplex virus 1 and 2 (HSV1 or 2), murine cytomegalovirus 51 

(MCMV), and vaccinia virus (VV). In each of these cases, necroptosis protects 52 

the infected animal (2-7). Examples also exist where increased necroptosis 53 

contributes to tissue injury and exacerbates viral disease (7, 8). The impact of 54 

necroptosis on these viral diseases may be due to premature death of the 55 

infected cell or as a consequence of inflammation induced by leakage of 56 

molecules from necrotic cells (9, 10).  57  58 

Necroptosis requires the activation of receptor interacting protein 3 (RIP3) 59 

kinase (6, 11, 12). Once activated, RIP3 kinase signals via the pseudokinase, 60 

mixed lineage kinase-like (MLKL) protein to promote a necrotic form of cell death 61 

that is characterized by loss of membrane integrity and leakage of cellular 62 

contents (13-23). RIP3 contains a receptor-interacting protein homotypic 63 

interacting motif (RHIM) and is activated via interactions with other cellular RHIM-64 

containing proteins - TRIF (TIR-domain-containing adapter-inducing interferon-β), 65 

RIP1, or DAI (DNA-dependent activator of IFN-regulatory factors) (24). TRIF 66 

activation by Toll-like receptor 3 (TLR3) and TLR4 ligands can evoke necroptosis 67 

but necroptosis by this mechanism has not yet been demonstrated following virus 68 

infection (25, 26). RIP1 activation by tumor necrosis factor α (TNFα) induces 69 

RIP3-dependent necroptosis following VV infection (6). The pathogen sensor, 70 
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DAI is required for necroptosis in cells infected with a MCMV variant (5). 71 

Ribonucleotide reductases, ICP6 and ICP10, respectively encoded by HSV1 and 72 

HSV2 contain a RHIM-like domain. These ribonucleotide reductases interact with 73 

murine RIP1 and RIP3, promote RIP1-RIP3 or RIP3-RIP3 oligomerization, and 74 

induce necroptosis (2, 3).  75 

 76 

In contrast to these studies on DNA viruses, mechanisms by which RNA 77 

viruses induce necroptosis are less understood. IAV induces necroptosis in the 78 

lungs of cIAP2-deficient mice (8). Because uninfected cells also undergo cell 79 

death in this model, it is thought that cell death is a consequence of alteration in 80 

cellular homeostasis rather than induced by viral replication events. In wild-type 81 

cells, IAV activates a RIP3-containing signaling platform that can induce either 82 

apoptosis or necroptosis (7).  Recent evidence suggests that DAI, which was 83 

previously thought to be a sensor for cytoplasmic DNA interacts with IAV 84 

components to engage RIP3 and induce necroptosis (27, 28). RNA viruses such 85 

as Coxsackievirus B (CVB), coronavirus, mammalian reovirus (Reovirus), 86 

Theiler’s murine encephalomyelitis virus (TMEV), and West Nile virus (WNV) 87 

also have been demonstrated to evoke cell death with morphologic features 88 

resembling necrosis (29-32). However, the events in viral replication that initiate 89 

pronecrotic signaling pathways have not been defined for these RNA viruses.   90 

 91 

In this study, we investigated the mechanism by which reovirus infection 92 

culminates in necroptosis. Our results indicate that IFNβ produced by detection 93 
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of genomic RNA of incoming virus particles is required, but not sufficient for 94 

eliciting necroptosis. In addition to IFNβ expression, de novo synthesis of viral 95 

dsRNA is also required for necroptosis induction. These results suggest that 96 

detection of viral components at two distinct stages is required for the induction 97 

of necroptosis following infection with an RNA virus.  98 
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MATERIAL AND METHODS 99 

Cells and viruses. Spinner-adapted L929 cells (obtained from Dr. T. Dermody’s 100 

laboratory) were maintained in Joklik’s MEM (Lonza) supplemented to contain 101 

5% FBS, 2 mM L-glutamine, 100 U/ml of penicillin, 100 µg/mL streptomycin, and 102 

25 ng/mL of amphotericin B. Spinner-adapted L929 cells were used for 103 

cultivating and purifying viruses and for plaque assays. Prototype reovirus strain 104 

T3D was regenerated by plasmid based reverse genetics (33, 34). Viral particles 105 

were purified by Vertrel XF-extraction and CsCl gradient centrifugation (35). Viral 106 

titer was determined by plaque assay using spinner-adapted L929 cells (36). UV-107 

inactivated virus was generated using a UV cross-linker (CL-1000 UV 108 

Crosslinker; UVP). Virus diluted in PBS was placed in a 60-mm tissue culture 109 

dish and irradiated with short-wave (254-nm) UV on ice at a distance of 10 cm for 110 

1 min at 120,000 µJ/cm2. Murine L929 cells (ATCC CCL-1) were maintained in 111 

Eagle’s MEM (Lonza) supplemented with 10% fetal bovine serum (FBS), and 2 112 

mM L-glutamine. ATCC L929 cells were used for all experiments to assess cell 113 

death, viral RNA and protein synthesis, and cell signaling. Distinct from some 114 

L929 cell lines, the ATCC L929 cells used for this study do not undergo TNFα or 115 

zVAD-mediated cell death (37, 38). Wild-type and mutant bone marrow derived 116 

macrophages were obtained from Drs. Edward Mocarski and Mehul Suthar 117 

(Emory University) and were maintained in DMEM with 20% FBS, 10% filtered 118 

conditioned medium from L929 cells, 2 mM L-glutamine, 100 U/ml of penicillin, 119 

and 100 µg/mL streptomycin. 120 

 121 
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Reagents. Z-VAD-FMK and Q-VD-OPh were purchased from Enzo Life 122 

Sciences or R & D Systems, Necrostatin-1 was purchased from Calbiochem. 123 

Ammonium chloride (AC), GuHCl, poly I:C, and human TNFα were purchased 124 

from Sigma-Aldrich. siRNAs were purchased from Dharmacon as SMARTpools 125 

of ON-TARGET plus siRNA. Non-targeting siRNA control pool or siRNA targeting 126 

β-galactosidase were used as controls. Antisera raised against reovirus were 127 

obtained from T. Dermody. Monoclonal antibody against IFNAR and rabbit 128 

antisera against RIP3 were purchased from Santa Cruz Biotechnology, those 129 

against TRIF, phospho-MLKL and total MLKL were purchased from Abcam, and 130 

those against RIG-I and MDA5 were purchased from Cell Signaling. Mouse 131 

antiserum specific for PSTAIR was purchased from Sigma, specific for KDEL 132 

was purchased from Enzo Life Sciences. Alexa Fluor-conjugated anti-mouse 133 

IgG, anti-rabbit IgG, and anti-goat IgG secondary antibodies were purchased 134 

from Invitrogen. IRDye-conjugated anti-guinea pig IgG was purchased from LI-135 

COR.  136 

 137 

Fixing, embedding, and sectioning of infected cells.  L929 cells grown on 100 138 

mm dishes were either mock infected or infected with 10 PFU/cell of T3D for 1 h 139 

at room temperature.  Following the viral attachment incubation, the cells were 140 

washed twice with PBS and then overlayed with fresh medium.  At 34 h post 141 

infection, uninfected and infected cells were washed with PBS, trypsinized, 142 

pelleted for 5 min at 800 ✕ g, and washed again with PBS.  The pelleted cells 143 

were then fixed with 2.5% glutaraldehyde diluted in sodium cacodylate buffer 144 
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(100 mM sodium cacodylate [pH 7.5], 2 mM MgCl2, 2 mM CaCl2, 0.5% NaCl) for 145 

60 min at room temperature.  Following fixation, the cells were washed twice with 146 

sodium cacodylate buffer.  The washed cells were post fixed with 1% osmium 147 

tetroxide diluted in sodium cacodylate buffer for 60 min at room temperature.  148 

The fixed cells were washed twice with sodium cacodylate buffer followed by one 149 

wash with 100 mM sodium acetate [pH 4.2].  The cells were then stained with 150 

0.5% uranyl acetate diluted in 100 mM sodium acetate [pH 4.2] for 60 min at 151 

room temperature.  After staining, the cells were washed twice with 100 mM 152 

sodium acetate [pH 4.2].  Prior to embedding, the fixed and stained cells were 153 

dehydrated with sequential concentrations of ethanol (EtOH):  35% EtOH once 154 

for 5 min, 50% EtOH once for 5 min, 70% EtOH once for 5 min, 90% EtOH once 155 

for 5 min, 95% EtOH once for 5 min, and 100% EtOH four times for 5 min each.  156 

The dehydrated cells were incubated in a solution composed of 50% EMbed 812 157 

resin and 50% EtOH for 2 h at room temperature.  The cells were then incubated 158 

in 100% EMbed 812 resin overnight at room temperature.  The next day, the 159 

resin was replaced with fresh EMbed 812 resin, which was allowed to harden for 160 

18 h at 65°C.  Thin-sections (85 nm thick) were collected using a diamond knife 161 

on a Leica Biosystems microtome. 162 

 163 

Transmission electron microscopy (TEM).  Thin-sections of uninfected and 164 

infected cells were applied to 300-mesh copper grids and stained with Reynold’s 165 

lead citrate and 2% uranyl acetate (40).  The stained grids were analyzed using a 166 

JEOL 1010 transmission electron microscope operating at 80 kV.  Images were 167 
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recorded using a Gatan MegaScan 794 charge-coupled-device camera.  168 

Micrographs were processed and analyzed using ImageJ software. 169 

 170 

Infections and preparation of extracts. Cells were either adsorbed with PBS or 171 

T3D at room temperature for 1 h, followed by incubation with media at 37ºC for 172 

the indicated time interval. Ribavirin, GuHCl, Z-VAD-FMK, Q-VD-OPh, 173 

Necrostatin-1, or anti-IFNAR Ab was added to the media immediately after the 1 174 

h adsorption period. For preparation of whole cell lysates, cells were washed in 175 

phosphate-buffered saline (PBS) and lysed with 1X RIPA (50 mM Tris [pH 7.5], 176 

50 mM NaCl, 1% TX-100, 1% DOC, 0.1% SDS, and 1 mM EDTA) containing a 177 

protease inhibitor cocktail (Roche), 500 μM DTT, and 500 μM PMSF, followed by 178 

centrifugation at 15000 × g for 10 min to remove debris. For detection of 179 

phosphorylated MLKL, cells were lysed in 1X RIPA supplemented with 10 mM 180 

NaF. 181 

 182 

RNA transfection and cell death. L929 cells were mock infected or infected 183 

with 10 PFU/cell of T3D for 24 h. Total RNA was extracted using Tri-reagent 184 

(Molecular Research Center). When needed, the RNA was mock treated or CIP 185 

treated for 1 h at 37°C and repurified using Tri-reagent. 100 ng of RNA was 186 

introduced into the cells by Lipofectamine 2000 transfection. Cell death was 187 

measured 21-24 h following transfection. 188 

 189 

 on M
arch 15, 2017 by W

ashington U
niversity in S

t. Louis
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 11

Immunoblot assay. Cell lysates were resolved by electrophoresis in 190 

polyacrylamide gels and transferred to nitrocellulose membranes. Membranes 191 

were blocked for at least 1 h in blocking buffer (PBS containing 5% milk or 2.5% 192 

BSA) and incubated with antisera against MLKL (1:2000), phosho-MLKL (1:750), 193 

RIP3 (1:1000), MAVS (1:1000), RIG-I (1:1000), MDA5 (1:1000), TRIF (1:1000), 194 

or PSTAIR (1:10000) at 4ºC overnight. Membranes were washed three times for 195 

5 min each with washing buffer (TBS containing 0.1% Tween-20) and incubated 196 

with 1:20000 dilution of Alexa Fluor conjugated goat anti-rabbit IgG (for RIP3, 197 

RIG-I, and MDA5), donkey anti-goat IgG (for RIP3), goat anti-mouse IgG (for 198 

KDEL and PSTAIR), or IRDye-conjugated anti-guinea pig IgG (for σNS) in 199 

blocking buffer. Following three washes, membranes were scanned using an 200 

Odyssey Infrared Imager (LI-COR).  201 

 202 

Knockdown of host proteins by siRNA. In 96-well plates, 0.25 μl 203 

Lipofectamine 2000 was used to transfect 15 pmoles of siRNA. Cells (1 × 104) 204 

were seeded on top of the siRNA-lipofectamine mixture. In 24-well plates, 0.75 μl 205 

Lipofectamine 2000 was used to transfect 45 pmoles of siRNA. Cells (5 × 104) 206 

were seeded on top of the siRNA-lipofectamine mixture. Virus infection was 207 

performed 48 h following siRNA transfection. 208 

 209 

Assessment of cell death by measuring cellular ATP levels. Cells (1 × 104) 210 

grown in black, clear-bottom 96-well plates were mock infected with PBS or 211 

adsorbed with 10 PFU/cell of T3D at room temperature for 1 h. Following 212 
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incubation of cells at 37°C for 42 h, ATP levels were assessed using the Cell 213 

titer-Glo assay system (Promega).  214 

 215 

Assessment of cell death by acridine orange ethidium bromide staining. 216 

Cells grown in 24-well plates or 96-well plates were adsorbed with the indicated 217 

amount of virus. Inhibitors were added immediately following adsorption. The 218 

percentage of dead cells after 48 h incubation was determined using AOEB 219 

staining as described (41). For identifying host regulators of cell death, cells were 220 

transfected with siRNA as described above and incubated for 48 h prior to 221 

infection with T3D. For each experiment, >250 cells were counted by a blinded 222 

researchers, and the percentage of isolated cells exhibiting orange staining (EB 223 

positivity) was determined by epi-illumination fluorescence microscopy using a 224 

fluorescein filter set on an Olympus IX71 microscope. < 5% of uninfected cells 225 

were EB positive following treatment with each inhibitor or siRNA. 226 

 227 

Assessment of cell death by IncuCyte automated cell imaging. Cells grown 228 

in 48-well plates were mock infected with PBS or adsorbed with the indicated 229 

amount of virus. Inhibitors were added immediately following adsorption in 230 

addition to 500 nM Sytox green. The cells were imaged over a time course of 48 231 

h. Values of Sytox positive cells per mm2 48 h following infection are shown. 232 

   233 

Assessment of caspase-3/7 activity. ATCC L929 cells (1 × 104) were seeded 234 

into black clear-bottom 96-well plates, adsorbed with 10 PFU/cell of reovirus in 235 
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serum-free medium at room temperature for 1 h. Following incubation of cells at 236 

37°C for 48 h, caspase-3/7 activity was quantified using the Caspase-Glo-3/7 237 

assay system (Promega). 238 

 239 

Assessment of viral yield. BMDMs in 24-well plates were adsorbed in triplicate 240 

with 50 PFU/cell of T3D for 1 h. Cells were washed once with PBS, and 241 

incubated for 0 h or 24 h. Cells were frozen and thawed twice prior to 242 

determination of viral titer by plaque assay. Viral yields were calculated according 243 

to the following formula: log10yield24h = log10(PFU/ml)24h - log10(PFU/ml)0h. 244 

 245 

RT-qPCR. RNA was extracted from infected cells at various time intervals after 246 

infection using Tri-reagent or an RNAeasy kit (Qiagen). For RT-qPCR, 0.5 to 2 247 

μg of RNA was reverse transcribed using random hexamers or gene specific 248 

primers using High Capacity cDNA Reverse Transcription Kit (Applied 249 

Biosystems).  A 1:10 dilution of the cDNA was subjected to PCR using SYBR 250 

Select Master Mix (Applied Biosystems). ΔCt values for each cDNA sample were 251 

calculated by subtracting Ct values of T3DS1, ZBP1, or IFNβ and Ct values for 252 

GAPDH. Fold increase in gene expression with respect to control sample 253 

(indicated in each figure legend) was measured using the ΔΔCt method (42).  254 

 255 

Statistical analysis. Statistical significance between experimental groups was 256 

determined using the unpaired t-test function of the Graphpad Prism software. 257 
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Statistical analyses for differences in gene expression by RT-qPCR were done 258 

on the ΔCt values. 259 

  260 
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RESULTS 261 

Reovirus-induces necroptosis. Upon ultrastructural evaluation of L929 cells 262 

infected with prototype reovirus strain Type 3 Dearing (T3D) 34 h following 263 

infection (a time point conducive for recovery and processing of dying cells for 264 

microscopy), we observed cells with normal nuclear morphology, the absence of 265 

apoptotic blebs, swelling of the cellular cytoplasm and early stages of disruption 266 

of the plasma membrane (Figure 1A). These features are not characteristic of 267 

apoptosis and suggested that reovirus may elicit an alternate form of cell death, 268 

such as necrosis. Cell death can be assessed by measurement of cellular ATP 269 

levels or by evaluating the permeability of cellular nuclei to DNA-staining vital 270 

dyes. These treatments do not distinguish between cell death by apoptosis or 271 

necrosis and therefore need to be coupled with pharmacologic blockade of 272 

molecules specifically involved in cell death pathways leading to apoptosis or 273 

necrosis (43). Consistent with the absence of apoptotic features, although 274 

pancaspase inhibitors Z-VAD-FMK or Q-VD-OPh abolish effector caspase 275 

activation in L929 cells infected with reovirus, they fail to block cell death (Figure 276 

1B and 1C) (30). Instead, cell death following reovirus infection of L929 cells 277 

exhibits features of necrosis and is diminished by Nec1, a RIP1 kinase inhibitor 278 

(30). The kinase activity of RIP1 can potentiate the activation of RIP3 to promote 279 

necroptosis (6). To determine if reovirus-induced cell death occurs via this 280 

mechanism, we assessed the capacity of reovirus to elicit necrosis in cells 281 

expressing reduced levels of RIP3 (Figure 1D). We found that in comparison to 282 

cells treated with control siRNA, treatment of cells with siRNAs against RIP3 283 
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significantly decreased cell death (Figure 1E, 1F). The effect of RIP3 siRNA 284 

against reovirus-induced cell death matched the effect of RIP3 siRNA on 285 

necroptosis-inducing treatment of TNFα and Z-VAD-FMK (Figure 1G). These 286 

data indicate a role for RIP3 in the induction of cell death following reovirus 287 

infection. RIP3 can participate in the induction of both apoptosis and necroptosis 288 

(7, 44, 45). Because cell death following reovirus infection is unaffected by 289 

diminishment of caspase activity (Figure 1B,1C), these data suggest that reovirus 290 

induces RIP3-dependent necroptosis in L929 cells.   291 

 RIP3-dependent necroptosis requires the activation of the effector protein 292 

MLKL (13-23). MLKL is directly phosphorylated by RIP3 and MLKL 293 

phosphorylation is considered to be a hallmark of the activation of necroptosis 294 

signaling cascade (13, 46). To determine if reovirus infection leads to the 295 

activation of MLKL, we immunoblotted extracts from reovirus-infected cells using 296 

a phospho-MLKL antibody (Figure 1H). Our results indicate that MLKL is 297 

activated within 24 h following reovirus infection and remains activated until 48 h 298 

post infection, when a significant proportion of cells are undergoing cell death. 299 

The detection of this biochemical marker along with the genetic and 300 

pharmacologic experiments described above indicating that cell death is blocked 301 

by loss of RIP3 function but not of caspase function, meet the criteria to 302 

demonstrate that reovirus infection of L929 cells results in necroptosis (15).  303 

 304 

 Reovirus infects cells in a variety of tissues in newborn mice. Previous 305 

work on reovirus-induced apoptosis has utilized primary neurons or mouse 306 
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embryo fibroblasts (MEFs) to evaluate cell death pathways in primary cells. Since 307 

both neurons and MEFs succumb to reovirus via apoptosis (47-54), we used 308 

bone marrow-derived macrophages (BMDMs) to determine whether reovirus can 309 

induce necroptosis in primary cells. While it is not known if cells within the bone 310 

marrow are infected in reovirus-infected animals, identification of primary cells 311 

that undergo necroptosis following reovirus infection would allow us to 312 

complement our siRNA studies with work in cells from mice genetically deficient 313 

in important regulators of necroptosis. We found that cell death following reovirus 314 

infection of BMDMs occurred in the absence of caspase activity (Z-VAD-FMK-315 

treated cells) or RIP1 kinase activity (Nec1-treated cells) but was diminished 316 

when the activity of caspases and RIP1 kinase were simultaneously blocked 317 

(Figure 2A). Consistent with this, cell death was not blocked by the genetic 318 

absence of RIP3 but was reduced by blockade of caspases in the absence of 319 

RIP3 (Figure 2B, 2C). Cells lacking both caspase-8 and RIP3 were also resistant 320 

to death following reovirus infection (Figure 2D). These data indicate that 321 

reovirus can induce necroptosis in BMDMs when apoptosis is blocked. These 322 

findings match previous work in other systems where necroptosis is evident 323 

when caspases have been rendered non-functional (55-57). 324 

 In the context of infection by other viruses, necroptosis is antiviral (2, 4-7). 325 

To determine if necroptosis affects replication of reovirus, we measured viral 326 

yield over 24 h of infection in wild-type and RIP3-deficient BMDMs in the 327 

presence and absence of Z-VAD-FMK. Viral yields in wild-type cells treated with 328 

DMSO or Z-VAD-FMK were ~ 1 log10 (Figure 2E). The genetic absence of RIP3 329 
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enhanced viral yield to ~ 1.7 log10. Importantly, viral yield did not change in RIP3-330 

deficient BMDMs in conditions where apoptosis was blocked using Z-VAD-FMK. 331 

While the basis for the slight increase in viral yield in absence of RIP3 is unclear 332 

and was not further investigated, our data suggest that the capacity of cells to 333 

undergo necroptosis does not influence viral yield in cell culture. These data are 334 

reminiscent of previous evidence indicating that blockade of apoptosis does not 335 

influence reovirus replication in cell culture (47, 48). The absence of effect of cell 336 

death on reovirus replication in cell culture may be due to the differences in 337 

timing of the reovirus replication cycle and the induction of cell death. Whereas 338 

reovirus completes its replication cycle in 18 h, cell death following infection is 339 

not detected until 36-48 h following infection. 340 

  341 

Transfection of reovirus RNA can elicit necroptosis. Reovirus strains that 342 

exhibit a greater level of gene expression are more potent inducers of necrosis 343 

(58). Blockade of reovirus + strand RNA synthesis using ribavirin blocks necrosis, 344 

suggesting a possible role for viral RNA in the induction of necrosis (58). 345 

Transfection of dsRNA mimic poly I:C in L929 cells treated with either type I or 346 

type II IFNs results in cell death by necrosis (25, 26, 59). Because our data 347 

suggested a role for reovirus RNA in the induction of necroptosis in infected cells, 348 

we sought to determine if viral RNA was sufficient for the induction of 349 

necroptosis. For these experiments, we purified total RNA from mock- or 350 

reovirus-infected cells 24 h following infection. We found that in comparison to 351 

RNA from mock-infected cells, RNA extracted from T3D-infected cells induced a 352 
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significantly greater amount of cell death following transfection into cells (Figure 353 

3A, 3B). Cell death by transfected RNA was diminished by treatment with Nec1 354 

but not Q-VD-OPh (Figure 3C), analogous to what we have reported in L929 355 

cells infected with reovirus (30). These data are also consistent with previous 356 

work indicating that poly I:C-induced cell death is blocked by Nec1 (26). Our 357 

results presented above suggest that RNA isolated from reovirus-infected cells 358 

elicits necroptosis following introduction into L929 cells. Interestingly, unlike 359 

previous work with transfection of dsRNA into cells (25, 59), cell death following 360 

transfection of RNA extracted from reovirus-infected cells did not require priming 361 

of the cells with exogenous IFN. 362 

 We reasoned that necroptosis was induced without addition of exogenous 363 

IFN because transfection of reovirus RNA obtained from infected cells can 364 

induce the expression of IFNβ (60-62)(Figure 3D). Indeed, treatment with an 365 

IFNAR-blocking antibody MAR1-5A3 (63), resulted in a reduction in cell death 366 

(Figure 3D). IFNβ production following transfection of reovirus RNA occurs via 367 

RIG-I-mediated detection of the RNA (60). Consistent with this, removal of the 5’ 368 

phosphates using CIP resulted in a reduction in the expression of IFNβ (Figure 369 

3E) and the induction of cell death (Figure 3F, 3G). Interestingly, if cells were 370 

primed with exogenous IFNβ before transfection, the capacity of CIP-treated 371 

RNA to elicit necroptosis was restored (Figure 3F, 3G). These data suggest that 372 

though RIG-I mediated detection of viral RNA is required for IFNβ production, it is 373 

not sufficient for the induction of cell death. Thus, cell death induction occurs by 374 

sensing of viral RNA via an alternate pathway. 375 
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 Based on the evidence that poly I:C elicits necroptosis by TLR3 detection 376 

and signaling to RIP3 via TRIF (25, 26), we examined whether reovirus RNA-377 

induced necroptosis could be blocked by treatment of cells with ammonium 378 

chloride (AC), an agent that blocks TLR3-mediated detection of dsRNA (64). We 379 

found that though AC did not negatively impact IFNβ expression following RNA 380 

transfection (Figure 3H), it blocked cell death induction by transfected RNA 381 

(Figure 3I). Consistent with previous work, these data indicate that detection of 382 

reovirus RNA via RIG-I produces IFNβ. In addition, these data suggest that IFNβ 383 

primes reovirus RNA transfected cell to undergo TLR3-dependent necroptosis. 384 

Thus, the IFN- and TLR3-dependent pathway for induction of necroptosis 385 

following transfection of reovirus RNA into L929 cells is similar to that previously 386 

described for transfection of synthetic dsRNA (25, 59). 387 

 388 

Sensing of reovirus RNA during infection is required for necroptosis. We 389 

next sought to determine if detection of viral RNA in infected cells contributes to 390 

cell death induction in reovirus-infected cells. During infection, reovirus RNA can 391 

be detected by both RIG-I-like receptors (RLRs), RIG-I and MDA5 (65). 392 

Simultaneous reduction of both RLRs, or their common downstream signaling 393 

adaptor, MAVS, led to a significant reduction in cell death following reovirus 394 

infection (Figure 4A, 4B, 4C). The susceptibility of cells to TNFα and Z-VAD-FMK 395 

induced necroptosis was not changed following MAVS knockdown indicating that 396 

MAVS is not required for the function of the core necroptosis machinery (Figure 397 

4D). BMDMs deficient in either both RLRs or MAVS were also protected from 398 
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reovirus-induced necroptosis (Figure 4E, 4F). These data suggest that 399 

necroptosis following reovirus infection requires detection and signaling by RLRs.  400 

 401 

IFN signaling is required for necroptosis. To determine whether type I IFNs 402 

produced by RLR-MAVS signaling are required for reovirus-induced necroptosis, 403 

we quantified the capacity of reovirus to induce necroptosis in the presence of an 404 

IFNAR-blocking antibody (63). We found that this antibody diminished the 405 

expression of a representative interferon-stimulated gene (ISG), ZBP1, which is 406 

potently induced following reovirus infection (66), and diminished the capacity of 407 

reovirus to induce necroptosis (Figure 5A, 5B, 5C). This reduction in necroptosis 408 

was not due to a deleterious effect of the antibody on the capacity of reovirus to 409 

establish infection (Figure 5D). Blocking IFNAR signaling did not alter the 410 

capacity of TNFα and Z-VAD-FMK cotreatment to induce necroptosis, suggesting 411 

that this treatment did not affect the function of the core necroptosis machinery 412 

(Figure 5E). IFNAR-deficient BMDMs treated with Z-VAD-FMK also were 413 

resistant to reovirus-induced necroptosis (Figure 5E, 5F), indicating a role for IFN 414 

signaling in the induction of necroptosis following reovirus infection. 415 

 Based on the role for TLR3 in necroptosis following transfection of RNA 416 

obtained from reovirus-infected cells (Figure 3), we next sought to evaluate 417 

whether TLR3 is also required for cell death in reovirus-infected cells. Toward 418 

this goal, we tested the effect of AC on cell death induction in reovirus-infected 419 

cells. Because treatment of cells with AC prevents reovirus infection by blocking 420 

capsid disassembly, we initiated infection of AC-treated cells with infectious 421 
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subvirion particles (ISVPs), a viral entry intermediate that bypasses the inhibitory 422 

effect of AC (67).  We found that necroptosis following infection by ISVPs was 423 

unaffected by treatment with AC (Figure 5G). Parallel transfection of cells with 424 

reovirus RNA in control and AC treated cells yielded results that matched those 425 

described in Figure 3H (data not shown), indicating that AC treatment was 426 

effective. siRNA-mediated reduction in the expression of TRIF, the TLR3 adaptor 427 

also did not block cell death following reovirus infection (Figure 5H, 5I). These 428 

data indicate that although RLR-mediated IFNβ expression and signaling is 429 

required for necroptosis following both, RNA transfection and viral infection, 430 

TLR3-mediated signaling is only required for cell death after viral RNA 431 

transfection. 432 

  433 

 Two-stage detection of reovirus infection is required for necroptosis.  434 

We next sought to determine the stage of infection required for the induction of 435 

necroptosis. Blockade of viral + strand RNA synthesis using ribavirin diminishes 436 

reovirus-induced necrosis (58). The reovirus + sense RNA can direct protein 437 

synthesis or can be packaged into progeny core particles and serve as the 438 

template for minus strand RNA synthesis to generate viral genomic dsRNA (68). 439 

Progeny cores containing genomic dsRNA undergo secondary transcription to 440 

produce additional viral mRNAs. Thus, the diminishment of necroptosis by 441 

ribavirin treatment may be due to blockade of any of these steps in reovirus 442 

replication. To define the stage of infection required for necroptosis further, we 443 

used Guanidine hydrochloride (GuHCl). GuHCl does not affect reovirus + strand 444 
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RNA synthesis but prevents the generation of genomic dsRNA within infected 445 

cells (Figure 6A, 6C)(69). Under the conditions used, perhaps because sufficient 446 

translation occurs from primary transcripts, we did not observe a diminishment in 447 

viral protein synthesis in the presence of GuHCl (Figure 6B). Treatment of 448 

reovirus-infected cells with GuHCl led to diminishment in necroptosis (Figure 6D, 449 

6E). Because GuHCl does not affect necroptosis induced by TNFα and Z-VAD-450 

FMK treatment (Figure 6F), our results point to the importance of the synthesis of 451 

viral genomic dsRNA for the induction of necroptosis following reovirus infection. 452 

 It is not known when during infection reovirus RNA is detected to produce 453 

IFNβ. The type of reovirus RNA that activates the expression of IFNβ in the 454 

context of infection also remains undefined. Ribavirin and GuHCl may thus 455 

indirectly prevent cell death because they affect the synthesis of RNA required 456 

for IFNβ synthesis. To better understand the effect of ribavirin and GuHCl on 457 

reovirus-induced cell death, we measured the expression of the IFNβ mRNA at 458 

different times following infection of L929 cells with reovirus. We observed a ~ 10 459 

fold increase in IFNβ mRNA levels 12 h following infection (Figure 7A). No further 460 

increase in IFNβ mRNA was observed at 18 or 24 h following infection. We found 461 

that though IFNβ mRNA expression was diminished by blockade of virus 462 

disassembly using AC, it was not decreased by either ribavirin or GuHCl 463 

treatment (Figure 7B). Although UV-inactivated virus failed to produce detectable 464 

levels of reovirus S1 + strand RNA (> 3 log10-fold reduction), it remained capable 465 

of eliciting the same level of IFNβ mRNA expression as control, infectious virus 466 

(Figure 7C, 7D). These data suggest that genomic RNA present within incoming 467 
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viral particles is sufficient for the induction of IFNβ expression. These results are 468 

consistent with data describing IFN induction by a UV inactivated reovirus 469 

mutant, IRF3 activation following reovirus infection in absence of RNA synthesis 470 

and recent studies on IFN expression following avian reovirus infection (49, 70, 471 

71). We observed that an infection-induced increase in IFNβ expression was 472 

diminished in cells transfected with MAVS siRNA (Figure 7E). Importantly, MAVS 473 

was also required for efficient induction of IFNβ expression in reovirus-infected 474 

cells when viral + strand RNA synthesis was blocked using ribavirin (Figure 7E). 475 

These data suggest that genomic RNA within incoming virus particles is detected 476 

by cytoplasmically localized RLRs and signals via MAVS to produce IFNβ. 477 

Because necroptosis is blocked by GuHCl under conditions where IFNβ is 478 

produced but viral dsRNA synthesis is diminished (Figure 6, 7), these studies 479 

indicate that IFNβ signaling is required but not sufficient for the induction of cell 480 

death. Together, our data indicate a role for reovirus RNA at two different stages 481 

of infection to induce necroptosis. First, viral genomic dsRNA is detected during 482 

entry to activate type I IFN signaling. Second, generation of newly synthesized 483 

viral dsRNA is required for the induction of necroptosis.  484 
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DISCUSSION 485 

In this manuscript, we demonstrate that reovirus infection of both cultured cells 486 

and primary murine macrophages evokes necroptosis. Our results point to a role 487 

for viral components at two stages of infection to evoke necroptosis (Figure 8). 488 

First, detection of the incoming viral genomic RNA by host cell cytoplasmic 489 

sensors to produce IFNβ is required for necroptosis (Figure 4). In addition, 490 

synthesis of new viral genomic dsRNA also is required for the induction of 491 

necroptosis (Figure 6). This work indicates that the type I IFN signaling pathway 492 

functions in the induction of necroptosis following infection by an RNA virus. 493 

These data provide evidence for a previously unknown signaling cascade by 494 

which infection with an RNA virus culminates in necroptosis. 495 

  IFN signaling has been previously implicated in the induction of 496 

necroptosis. In Salmonella typhimurium infected mice, murine macrophages 497 

undergo necroptosis (72). In this context, the IFNAR is internalized and 498 

complexes with RIP1 and RIP3 to elicit necroptosis (72). ISGF3, a protein 499 

complex that drives the expression of ISGs following IFN signaling is required for 500 

sustained activation of RIP3 following ligation of TNFR or TLRs (73). However, 501 

whether a particular ISG modulates the basal activity of RIP3 has not been 502 

defined. Multiple ISGs are implicated in the induction of necroptosis. These 503 

include ZBP1/DAI, which may sense either viral DNA, viral RNA, or viral proteins, 504 

and those that recognize viral dsRNA (TLR3 and PKR)(5, 25, 27, 28, 74). Based 505 

on the role of DAI in the induction of necroptosis following IAV infection (27, 28), 506 

we tested the contribution of DAI to reovirus induced cell death. We found that 507 
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reovirus remained capable of inducing cell death in ZBP1-deficient BMDMs (data 508 

not shown). Our results suggest that TLR3 does not participate in necroptosis 509 

induction following reovirus infection (Figure 5). PKR can promote necroptosis in 510 

cells lacking functional FADD (74). Reovirus induces necroptosis in wild-type 511 

cells expressing FADD (Figure 1, 2). Moreover, because reovirus encodes a 512 

well-described PKR inhibitor, we think it unlikely that PKR is involved in this 513 

process (75). Thus, the identity of the ISGs that control necroptosis following 514 

reovirus infection remains to be determined. Because IAV induced necroptosis is 515 

unaffected by the genetic absence of MAVS or IFNAR (7) and requires ZBP1 516 

(27, 28), whereas reovirus-induced necroptosis requires MAVS and IFNAR 517 

(Figure 4, 5) but is not affected by the absence of ZBP1, the mechanism 518 

underlying necroptosis following reovirus infection appears distinct from that 519 

reported for IAV. 520 

  Investigations into reovirus-induced cell death indicate that reovirus 521 

infection can initiate cell death signaling from distinct stages of replication and 522 

elicit cell death via a variety of pathways. The precise pathway that executes cell 523 

death likely varies with cell type. One model suggests that events initiated during 524 

cell entry that occur after virus disassembly but prior to de novo synthesis of viral 525 

RNA and proteins can elicit cell death by apoptosis (76). Apoptosis by this 526 

mechanism is thought to occur independently of the presence of viral genomic 527 

RNA but relies on the function of the μ1 capsid protein and the host transcription 528 

factor NFκB (47, 77). Another set of studies implicates a role for viral genomic 529 

RNA, viral RNA sensors, and IRF3 in the induction of apoptosis. However, cell 530 
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death by this pathway does not appear to require viral replication or type I IFN 531 

signaling (49, 78). Two BH3-only members of the Bcl-2 family, Bid and Noxa 532 

appear to be involved in the induction of apoptosis and their function is 533 

downstream of transcription factors NFκB and IRF3 (48, 78). Our studies 534 

presented highlight an additional way in which reovirus infection leads to cell 535 

death. First, distinct from previous work on reovirus-induced apoptosis, we show 536 

that IFN signaling is required for necroptosis. Though we have not directly tested 537 

its requirement, IRF3, which is required for IFNβ expression (79), likely also plays 538 

a role in necroptosis. Thus the requirement for IRF3 in reovirus induced 539 

apoptosis and necroptosis is likely shared. Unlike for apoptosis, we demonstrate 540 

that the generation of viral genomic dsRNA late in infection is required for 541 

necroptosis (Figure 5). The requirement for genomic dsRNA synthesis may be 542 

direct, similar to the detection of viral RNA during transfection (Figure 2). 543 

Alternatively, synthesis of genomic dsRNA may be required to produce 544 

secondary transcripts, which in turn are detected by the host cell to induce 545 

necroptosis. Secondary transcripts generated following reovirus infection are 546 

qualitatively different than primary transcripts, and therefore, it is possible that 547 

secondary transcripts are detected in a manner distinct from primary transcripts 548 

(80). Though our studies indicate that protein synthesis in absence of ongoing 549 

dsRNA synthesis is not sufficient for necroptosis induction (Figure 6), it remains 550 

possible that viral proteins modulate necroptosis following reovirus infection.  551 

 Studies thus far have indicated a pathogenic role for apoptosis in reovirus-552 

induced encephalitis and myocarditis (81). Cell death pathways in reovirus-553 
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infected animals are thought to be tissue specific but precisely how these cell 554 

death pathways differ in a tissue-specific manner has not been defined (82, 83). 555 

It is possible that in some cases, cell death via IFN-dependent pathways we have 556 

described in this study contribute to tissue injury. Due to its natural preference for 557 

infecting and killing transformed cells and its innocuousness to human adults, 558 

reovirus is currently in phase III clinical trials as a cancer therapeutic (84). The 559 

capacity of reovirus to elicit cell death via multiple mechanisms may therefore 560 

underlie its efficacy as an effective therapeutic.    561 
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FIGURE LEGENDS 567 

Figure 1. Reovirus-induces necroptosis in L929 cells. (A) L929 cells infected 568 

with 10 PFU/cell of T3D for 34 h were fixed, stained, and imaged using 569 

transmission electron microscopy. (B) Cell death in L929 cells 48 h following 570 

mock infection or infection with 10 PFU/cell of T3D and treatment with DMSO or 571 

Q-VD-OPh (20 μM) was assessed by Cell Titer Glo. Luminescence measurement 572 

in similarly treated, uninfected cells was considered to represent 100% viability. 573 

(C) Caspase-3/7 activity 48 h following infection of L929 cells with 10 PFU/cell of 574 

T3D and treatment with DMSO or Q-VD-OPh was assessed by a 575 

chemiluminescent enzymatic assay. Caspase activity in mock-infected cells was 576 

set to 1. Data are represented as relative caspase-3/7 activity in comparison to 577 

similarly treated, uninfected cells. *, P < 0.05 compared to cells treated with 578 

DMSO. (D, E, F, G) L929 cells were transfected with non-targeting siRNAs or 579 

siRNAs specific for RIP3 (D) Efficiency of knockdown was assessed by 580 

immunoblotting for RIP3 and PSTAIR loading control. (E) Cell death 48 h 581 

following mock infection or infection with 10 PFU/cell of T3D was assessed by 582 

Cell Titer Glo. Luminescence measurement in similarly treated, uninfected cells 583 

was considered to represent 100% viability. *, P < 0.05 compared to cells 584 

transfected with non-targeting siRNAs. (F) Cell death 48 h following infection with 585 

10 PFU/cell of T3D was assessed by AOEB staining. *, P < 0.05 compared to 586 

cells transfected with non-targeting siRNAs. (G) Cell death 3 h following 587 

treatment with TNFα and Z-VAD-FMK treatment was assessed by Cell Titer Glo. 588 

Luminescence measurement in similarly siRNA treated, DMSO treated cells was 589 
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considered to represent 100% viability. (H) Whole cell extracts from L929 cells 590 

infected with 10 PFU/cell of T3D at the indicated time points were immunoblotted 591 

for phosphorylated MLKL, total MLKL, and PSTAIR loading control.  592 

 593 

Figure 2. Reovirus can induce necroptosis in primary BMDMs. (A) BMDMs 594 

from wild-type mice were mock infected or infected with 50 PFU/cell of T3D in the 595 

presence of DMSO, Z-VAD-FMK (25 μM) or Nec1 (50 μM) or both inhibitors. Cell 596 

death 48 h following infection was assessed by Cell Titer Glo. Luminescence 597 

measurement in similarly treated, uninfected cells was considered to represent 598 

100% viability. *, P < 0.05 compared to DMSO treated cells. (B) BMDMs from 599 

wild-type (left panel) or RIP3 -/- (right panel) mice were mock infected or infected 600 

with 50 PFU/cell of T3D in the presence DMSO or Z-VAD-FMK (25 μM). Cell 601 

death 48 h following infection was assessed by Cell Titer Glo. Luminescence 602 

measurement in uninfected cells of the same genotype that were similarly treated 603 

was considered to represent 100% viability. *, P < 0.05 compared to DMSO 604 

treated cells of the same genotype. (C) BMDMs were infected with 50 PFU/cell of 605 

T3D in the presence DMSO or Z-VAD-FMK (25 μM). Cell viability was assessed 606 

by Sytox green staining. *, P < 0.05 compared to DMSO treated cells of the same 607 

genotype. (D) BMDMs from wild-type, RIP3 -/-, or Casp8 -/- x RIP3 -/- mice were 608 

infected with 50 PFU/cell of T3D. Cell death 48 h following infection was 609 

assessed by Cell Titer Glo. Luminescence measurement in mock-infected cells 610 

of the same genotype was considered to represent 100% viability. *, P < 0.05 611 

compared to wild-type cells.  (E) BMDMs from wild-type or RIP3 -/- mice were 612 

 on M
arch 15, 2017 by W

ashington U
niversity in S

t. Louis
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


 32

infected with 50 PFU/cell of T3D in the presence or absence of Z-VAD-FMK (25 613 

μM). Virus yield 24 h following infection was measured using plaque assay.  614 

  615 

Figure 3. Reovirus RNA is sufficient for the induction of necroptosis. (A,B) 616 

L929 cells were transfected with 100 ng of RNA extracted from mock-infected or 617 

reovirus-infected cells. (A) Cell death 24 h following transfection was assessed 618 

by Cell Titer Glo. Luminescence measurement in untransfected cells was 619 

considered to represent 100% viability. *, P < 0.05 compared to cells transfected 620 

with RNA extracted from mock-infected cells. (B) Cell death 24 h following 621 

transfection of RNA was assessed by AOEB staining. *, P < 0.05 compared to 622 

cells transfected with RNA extracted from mock-infected cells (C) L929 cells 623 

were transfected with 100 ng of RNA extracted from mock infected or reovirus-624 

infected cells in the presence of DMSO, Q-VD-OPh (25 μM) or Nec1 (50 μM). 625 

Cell death 24 h following transfection was assessed by Cell Titer Glo. 626 

Luminescence measurement in similarly treated cells transfected with RNA from 627 

mock-infected cells was considered to represent 100% viability.  *, P < 0.05 628 

compared to cells transfected with DMSO treated cells transfected with the same 629 

type of RNA (D) L929 cells were transfected with 100 ng of RNA extracted from 630 

mock-infected or reovirus-infected cells. Levels of IFNβ mRNA were assessed by 631 

RT-qPCR at 18 h following transfection. IFNβ:GAPDH ratio for cells transfected 632 

with RNA from mock-infected cells was considered 1. *, P < 0.05 compared to 633 

cells transfected with RNA from mock-infected cells. (E) L929 cells were 634 

transfected with 100 ng of RNA extracted from mock-infected or reovirus-infected 635 
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cells in the presence and absence of 0.1 μg/ml anti-IFNAR Ab. Cell death 24 h 636 

following transfection was assessed by Cell Titer Glo. Luminescence 637 

measurement in similarly treated cells transfected with RNA from mock-infected 638 

cells was considered to represent 100% viability. *, P < 0.05 compared to cells 639 

transfected with same type of RNA without anti-IFNAR Ab. (F) L929 cells were 640 

transfected 100 ng of untreated or CIP-treated RNA extracted from reovirus-641 

infected cells. Levels of IFNβ mRNA were assessed by RT-qPCR at 18 h 642 

following transfection. IFNβ:GAPDH ratio for cells transfected with untreated 643 

RNA from reovirus-infected cells was considered 1. *, P < 0.05 compared to cells 644 

transfected with untreated RNA from reovirus-infected cells. (G) Cells treated 645 

with 0 or 100 units/ml IFNβ were transfected with 100 ng of untreated RNA from 646 

mock-infected cells or untreated or CIP-treated RNA from T3D-infected cells. Cell 647 

death 24 h following transfection was assessed by Cell Titer Glo. Luminescence 648 

measurement in similarly treated cells transfected with RNA from mock-infected 649 

cells was considered to represent 100% viability.  *, P < 0.05 compared to 650 

similarly treated cells transfected with untreated RNA from T3D-infected cells. **, 651 

P < 0.05 compared to cells transfected with similarly treated RNA in the presence 652 

of 0 units/ml of IFNβ. (H) Cells treated with 0 or 100 units/ml IFNβ were 653 

transfected with 100 ng of untreated or CIP-treated RNA from T3D-infected cells. 654 

Cell death 24 h following transfection of RNA was assessed by AOEB staining. *, 655 

P < 0.05 compared to cells transfected with similarly treated RNA in the presence 656 

of 0 mU/ml of IFNβ. (I) Cells pretreated with 0 or 20 mM AC were transfected 657 

with RNA from T3D-infected cells. Levels of IFNβ mRNA were assessed by RT-658 
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qPCR at 18 h following transfection. IFNβ:GAPDH ratio for cells 0 mM AC treated 659 

cells transfected with RNA from T3D-infected cells was considered 1. (J) Cells 660 

pretreated with 0 or 20 mM AC were transfected with 100 ng RNA from mock-661 

infected or T3D-infected cells. Cell death 24 h following transfection was 662 

assessed by Cell Titer Glo. Luminescence measurement in similarly treated cells 663 

transfected with RNA from mock-infected cells was considered to represent 664 

100% viability.  *, P < 0.05 compared to transfection of cells treated with 0 mM 665 

AC. 666 

 667 

Figure 4. Detection of viral RNA by cytoplasmic sensors is required for 668 

necroptosis. (A) L929 cells were transfected with non-targeting siRNAs or 669 

siRNAs specific for RIG-I, MDA5, or MAVS. Efficiency of knockdown was 670 

assessed by immunoblotting for RIG-I, MDA5, MAVS and KDEL or PSTAIR 671 

loading controls. (B, C, D) L929 cells were transfected with non-targeting siRNAs 672 

or siRNAs specific for both RIG-I and MDA5, or MAVS. (B) Cell death 48 h 673 

following mock infection or infection with 10 PFU/cell of T3D was assessed by 674 

Cell Titer Glo. Luminescence measurement in uninfected cells transfected with 675 

the same siRNA was considered to represent 100% viability. *, P < 0.05 676 

compared to cells transfected with non-targeting siRNAs. (C) Cell death 48 h 677 

following infection with 10 PFU/cell of T3D was assessed by AOEB staining. *, P 678 

< 0.05 compared to cells transfected with non-targeting siRNAs.  (D) Cell death 3 679 

h following treatment with TNFα and Z-VAD-FMK treatment was assessed by 680 

Cell Titer Glo. Luminescence measurement in similarly siRNA treated, DMSO 681 
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treated cells was considered to represent 100% viability. (E) Cell death in wild-682 

type, RIG-I -/- x MDA5 -/- or MAVS -/- BMDMs treated with Z-VAD-FMK following 683 

mock infection or infection with 50 PFU/cell of T3D was assessed by Cell Titer 684 

Glo. Luminescence measurement in mock-infected cells of the same genotype 685 

was considered to represent 100% viability. *, P < 0.05 compared to wild-type 686 

cells. (F) Cell death in wild-type, RIG-I -/- x MDA5 -/- or MAVS -/- BMDMs treated 687 

with Z-VAD-FMK (25 μM) following infection with 50 PFU/cell of T3D was 688 

assessed by Sytox green staining. *, P < 0.05 compared to wild-type cells. 689 

 690 

Figure 5. Signaling via IFNAR is required for necroptosis (A,B,C,D) L929 691 

cells were infected with 10 PFU/cell of T3D in the presence of 0.1 μg/ml of anti-692 

IFNAR Ab. (A) Levels of ZBP1 mRNA were assessed using RT-qPCR at 24 h 693 

post infection. ZBP1:GAPDH ratio at 0 h post infection was set to 1. *, P < 0.05 694 

compared to cells infected without IFNAR antibody. (B) Cell death 48 h following 695 

mock infection or infection with 10 PFU/cell of T3D was assessed by Cell Titer 696 

Glo. Luminescence measurement in similarly treated, mock-infected cells was 697 

considered to represent 100% viability. *, P < 0.05 compared to cells infected 698 

without IFNAR antibody. (C) Cell death 48 h following infection with 10 PFU/cell 699 

of T3D was assessed by AOEB staining. *, P < 0.05 compared to cells infected 700 

without IFNAR antibody. (D) Viral infectivity 18 h following infection with 2 701 

PFU/cell T3D was assessed by indirect immunofluorescence. (E) Cell death 3 h 702 

following treatment with TNFα and Z-VAD-FMK treatment was assessed by Cell 703 

Titer Glo. Luminescence measurement cells treated without IFNAR antibody was 704 
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considered to represent 100% viability. (F) Cell death in wild-type and IFNAR-705 

deficient BMDMs treated with Z-VAD-FMK following mock infection or infection 706 

with 50 PFU/cell of T3D. Cell viability was assessed by Cell titer Glo. 707 

Luminiscence measurement in mock-infected cells of the same genotype was 708 

considered to represent 100% viability. *, P < 0.05 compared to wild-type cells. 709 

(G) Cell death in wild-type and IFNAR-deficient BMDMs treated with Z-VAD-FMK 710 

following infection with 50 PFU/cell of T3D was assessed by Sytox green 711 

staining. *, P < 0.05 compared to wild-type cells. (H) L929 cells were mock 712 

infected or infected with 100 PFU/cell of T3D ISVPs in the presence or absence 713 

of 20 mM AC. Cell death 48 h following infection was assessed by Cell Titer Glo. 714 

Luminiscence measurement in similarly treated, mock-infected cells was 715 

considered to represent 100% viability.  *, P < 0.05 compared to cells infected 716 

without AC. (H, I) L929 cells were transfected with non-targeting siRNAs or 717 

siRNAs specific for TRIF. (H) Efficiency of knockdown was assessed by 718 

immunoblotting for TRIF and PSTAIR loading control. (I) Cell death 48 h 719 

following mock infection or infection with 10 PFU/cell of T3D was assessed by 720 

Cell Titer Glo. Luminescence measurement in uninfected cells transfected with 721 

the same siRNA was considered to represent 100% viability.  722 

 723 

Figure 6. Synthesis for genomic dsRNA is required for necroptosis. L929 724 

cells were infected with 10 PFU/cell of T3D in the presence of ribavirin (200 μM) 725 

or GuHCl (15 mM). (A) Levels of reovirus + strand RNA corresponding to the viral 726 

S1 gene segment were measured by RT-qPCR 24 h post infection. Reovirus 727 
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T3D S1 +:GAPDH ratio in untreated cells infected for 0 h was considered 1.*, P < 728 

0.05 compared to cells infected with T3D in absence of inhibitor. (B) Levels of 729 

reovirus μ1C protein and PSTAIR loading control 24 h following infection with 10 730 

PFU/cell of T3D were assessed by immunoblotting. (C) Generation of reovirus 731 

genomic dsRNA at 24 h following infection was evaluated by electropherotyping. 732 

(D) Cell death 48 h following mock infection or infection with 10 PFU/cell of T3D 733 

was assessed by Cell Titer Glo. Luminescence measurement in similarly treated, 734 

uninfected cells was considered to represent 100% viability. *, P < 0.05 735 

compared to control treated cells. (E) Cell death 48 h following infection with 10 736 

PFU/cell of T3D was assessed by AOEB staining. *, P < 0.05 compared to 737 

control treated cells. (F) Cell death 4 h following treatment with TNFα and Z-738 

VAD-FMK treatment was assessed by Cell Titer Glo. Cell viability in similarly 739 

treated cells in absence of TNFα and Z-VAD-FMK was considered 100%. 740 

 741 

Figure 7. De novo synthesis of viral RNA is not required for IFN expression. 742 

(A) L929 cells were infected with 10 PFU/cell of T3D. Levels of IFNβ mRNA were 743 

assessed at the indicated time intervals using RT-qPCR. IFNβ:GAPDH ratio at 0 744 

h post infection was set to 1. *, P < 0.05 compared to cells infected for 0 h. (B) 745 

L929 cells treated with AC (20 mM), ribavirin (200 μM), or GuHCl (15 mM) were 746 

infected with 10 PFU/cell of T3D. Levels of IFNβ mRNA were assessed by RT-747 

qPCR at 24 h post infection. IFNβ:GAPDH ratio for untreated, T3D-infected cells 748 

was set to 1. *, P < 0.05 compared to control treated, infected cells. (C,D) L929 749 

cells were infected with 10 PFU/cell of T3D and equivalent particles of UV-750 
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treated T3D. (C) Levels of reovirus + strand RNA corresponding to the viral S1 751 

gene segment were measured by RT-qPCR 24 h post infection. Reovirus T3D 752 

S1 +:GAPDH ratio in cells infected for 0 h was considered 1. UD, undetectable, 753 

value below that detected at 0 h (D) Levels of reovirus IFNβ RNA corresponding 754 

were measured by RT-qPCR 24 h post infection. IFNβ:GAPDH ratio in cells 755 

infected with infectious T3D was considered 1. (E) L929 cells were transfected 756 

with non-targeting siRNAs or siRNAs specific for MAVS. Levels of IFNβ mRNA in 757 

cells infected with 10 PFU/cell of T3D in the presence of absence of ribavirin 758 

(200 μM) were assessed by RT-qPCR. IFNβ:GAPDH ratio for untreated, T3D 759 

infected non-targeting siRNA treated was set to 1. *, P < 0.05 compared to 760 

untreated, T3D infected non-targeting siRNA treated cells.  761 

  762 

Figure 8. Model for reovirus-induced necroptosis. Genomic RNA from 763 

incoming viral particles is sensed by RLRs to produce type I IFN in a MAVS-764 

dependent manner. De novo synthesized viral genomic dsRNA or viral 765 

secondary transcripts produced from newly synthesized genomic dsRNA (GuHCl 766 

sensitive replication events) are detected by an as yet unidentified ISG to elicit 767 

RIP3-dependent necrotic cell death.   768 
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