67,656 research outputs found
Memcapacitive Devices in Logic and Crossbar Applications
Over the last decade, memristive devices have been widely adopted in
computing for various conventional and unconventional applications. While the
integration density, memory property, and nonlinear characteristics have many
benefits, reducing the energy consumption is limited by the resistive nature of
the devices. Memcapacitors would address that limitation while still having all
the benefits of memristors. Recent work has shown that with adjusted parameters
during the fabrication process, a metal-oxide device can indeed exhibit a
memcapacitive behavior. We introduce novel memcapacitive logic gates and
memcapacitive crossbar classifiers as a proof of concept that such applications
can outperform memristor-based architectures. The results illustrate that,
compared to memristive logic gates, our memcapacitive gates consume about 7x
less power. The memcapacitive crossbar classifier achieves similar
classification performance but reduces the power consumption by a factor of
about 1,500x for the MNIST dataset and a factor of about 1,000x for the
CIFAR-10 dataset compared to a memristive crossbar. Our simulation results
demonstrate that memcapacitive devices have great potential for both Boolean
logic and analog low-power applications
A Security Monitoring Framework For Virtualization Based HEP Infrastructures
High Energy Physics (HEP) distributed computing infrastructures require
automatic tools to monitor, analyze and react to potential security incidents.
These tools should collect and inspect data such as resource consumption, logs
and sequence of system calls for detecting anomalies that indicate the presence
of a malicious agent. They should also be able to perform automated reactions
to attacks without administrator intervention. We describe a novel framework
that accomplishes these requirements, with a proof of concept implementation
for the ALICE experiment at CERN. We show how we achieve a fully virtualized
environment that improves the security by isolating services and Jobs without a
significant performance impact. We also describe a collected dataset for
Machine Learning based Intrusion Prevention and Detection Systems on Grid
computing. This dataset is composed of resource consumption measurements (such
as CPU, RAM and network traffic), logfiles from operating system services, and
system call data collected from production Jobs running in an ALICE Grid test
site and a big set of malware. This malware was collected from security
research sites. Based on this dataset, we will proceed to develop Machine
Learning algorithms able to detect malicious Jobs.Comment: Proceedings of the 22nd International Conference on Computing in High
Energy and Nuclear Physics, CHEP 2016, 10-14 October 2016, San Francisco.
Submitted to Journal of Physics: Conference Series (JPCS
A Survey of Prediction and Classification Techniques in Multicore Processor Systems
In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems
Activity-promoting gaming systems in exercise and rehabilitation
Commercial activity-promoting gaming systems provide a potentially attractive means to facilitate exercise and rehabilitation. The Nintendo Wii, Sony EyeToy, Dance Dance Revolution, and Xbox Kinect are examples of gaming systems that use the movement of the player to control gameplay. Activity-promoting gaming systems can be used as a tool to increase activity levels in otherwise sedentary gamers and also be an effective tool to aid rehabilitation in clinical settings. Therefore, the aim of this current work is to review the growing area of activity-promoting gaming in the context of exercise, injury, and rehabilitation
Future RAN architecture: SD-RAN through a general-purpose processing platform
In this article, we identify and study the potential of an integrated deployment solution for energy-efficient cellular networks combining the strengths of two very active current research themes: 1) software-defined radio access networks (SD-RANs) and 2) decoupled signaling and data transmissions, or beyond cellular green generation (BCG2) architecture, for enhanced energy efficiency. While SD-RAN envisions a decoupled centralized control plane and data-forwarding plane for flexible control, the BCG2 architecture calls for decoupling coverage from the capacity and coverage provided through an always-on low-power signaling node for a larger geographical area; the capacity is catered by various on-demand data nodes for maximum energy efficiency. In this article, we show that a combined approach that brings both specifications together can not only achieve greater benefits but also facilitate faster realization of both technologies. We propose the idea and design of a signaling controller that acts as a signaling node to provide always-on coverage, consuming low power, and at the same time host the control plane functions for the SDRAN through a general-purpose processing platform. The phantom cell concept is also a similar idea where a normal macrocell provides interference control to densely deployed small cells, although our initial results show that the integrated architecture has a much greater potential for energy savings than phantom cells
Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems
Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions
Migration energy aware reconfigurations of virtual network function instances in NFV architectures
Network function virtualization (NFV) is a new network architecture framework that implements network functions in software running on a pool of shared commodity servers. NFV can provide the infrastructure flexibility and agility needed to successfully compete in today's evolving communications landscape. Any service is represented by a service function chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFIs) that are software modules executed on virtual machines. This paper deals with the migration problem of the VNFIs needed in the low traffic periods to turn OFF servers and consequently to save energy consumption. Though the consolidation allows for energy saving, it has also negative effects as the quality of service degradation or the energy consumption needed for moving the memories associated to the VNFI to be migrated. We focus on cold migration in which virtual machines are redundant and suspended before performing migration. We propose a migration policy that determines when and where to migrate VNFI in response to changes to SFC request intensity. The objective is to minimize the total energy consumption given by the sum of the consolidation and migration energies. We formulate the energy aware VNFI migration problem and after proving that it is NP-hard, we propose a heuristic based on the Viterbi algorithm able to determine the migration policy with low computational complexity. The results obtained by the proposed heuristic show how the introduced policy allows for a reduction of the migration energy and consequently lower total energy consumption with respect to the traditional policies. The energy saving can be on the order of 40% with respect to a policy in which migration is not performed
- …
