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Over the last decade, memristive devices have been widely ad-

opted in computing for various conventional and unconventional

applications. While the integration density, memory property,

and nonlinear characteristics have many benefits, reducing the

energy consumption is limited by the resistive nature of the de-

vices. Memcapacitors would address that limitation while still

having all the benefits of memristors. Recent work has shown

that with adjusted parameters during the fabrication process, a

metal-oxide device can indeed exhibit a memcapacitive behav-

ior. We introduce novel memcapacitive logic gates and memca-

pacitive crossbar classifiers as a proof of concept that such ap-

plications can outperform memristor-based architectures. The

results illustrate that, compared to memristive logic gates, our

memcapacitive gates consume about 7× less power. The mem-

capacitive crossbar classifier achieves similar classification per-

formance but reduces the power consumption by a factor of about

1, 500× for the MNIST dataset and a factor of about 1, 000× for

the CIFAR-10 dataset compared to a memristive crossbar. Our

simulation results demonstrate that memcapacitive devices have

great potential for both Boolean logic and analog low-power ap-

plications.
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1 INTRODUCTION

The ever-growing demand for more speed and lower power in circuit design

poses significant challenges for the continuing scaling of today’s CMOS tech-

nology. Fundamental physical as well as architectural limits lead to new bot-

tlenecks. While the advent of multicore architectures alleviated some of the

challenges, more cores do not always mean better: only a fraction of the

cores typically operate at full speed because of Amdal’s law and power con-

straints [12]. Finding alternative devices and architectures beyond CMOS,

beyond Boolean logic, and beyond von Neumann architectures has been a

major driver of the unconventional computing community.

Memristive devices [44] have been widely adopted in previous years for

various conventional and unconventional applications. They have shown great

promise for high integration densities as well as low energy consumption

[17, 38, 41], for example for neuromorphic applications [15, 22, 23, 46, 58]

and for memristor-based logic circuit design [49]. However, the energy con-

sumption of memristors is bounded by the resistive nature of these devices.

That is where memcapacitors [4, 29], another mem-element, may have further

benefits.

Recent work demonstrated a memcapacitive response in a MoS2 mono-

layer metal insulator devices [20], in a metal-insulator composite of Si3N4,

p−Si, and BiFeO3 [56], in organic polymer layers embedded with graphene

sheets [32], in a nano device of polyvinyl alcohol/cadmium sulphide [40],

and in a hafnium oxide (HfOx) on n-type Si substrate [54]. Mohamed et

al. discovered that it is possible to construct a memcapacitive device from a

memristive metal-oxide composite by adjusting the physical device parame-

ters [29]. The memcapacitive characteristics of the device solely depend on

a behavior shape factor (BSF), which is controllable during the fabrication

process. Mohamed et al. derived a mathematical model that describes the

response of a metal-oxide device based on the device state, the capacitive

current, and the tunneling current. When the behavior shape factor is less

than 0.1, the capacitive current becomes dominant and the device operates as

a memcapacitor [29]. Biolek et al. designed a SPICE model that describes

the correlation between electrical charge q and voltage VC using a depen-

dent voltage-controlled current source [4]. Their SPICE model produced the

predicted results of a bipolar memcapacitive model with threshold through

simulations in PSpice, LTspice, and HSPICE.

Several applications of memcapacitive devices have been proposed, such

as the dynamic configurations of transmission lines [34], improving a cellu-
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lar neural network’s density [55], a memcapacitive synapse with integrate-

and-fire neurons [33], dynamic computing random access memory [47], and

biomimetic sensors [7]. Logic applications, combined with CMOS inverters,

have been demonstrated for both memristors [1, 26] and memcapacitors [47].

Similar to memristive logic gates, which can improve the chip density by

a factor of 2 compared to CMOS gates [8], memcapacitive logic gates are

equally promising for an increased area density. While memristive cross-

bars are widely adopted for machine learning applications, such as pattern

classification [2, 57], high-speed image processing [16], and random access

memory [50], memcapacitive crossbars, to the best of our knowledge, were

only introduced in [13, 45] but not fully explored in this context.

In this paper, we propose two novel memcapacitor applications: (1) binary

switching in digital logic and (2) analog computing in a crossbar classifier.

Our main contributions include a new set of memcapacitive logic gates as

well as a memcapacitor-based crossbar classifier. Our results show that both

memcapacitor architectures are significantly more energy-efficient while per-

forming similarly compared to memristor-based architectures. The work ex-

pands the foundations of computing with memcapacitive devices and is rele-

vant for applications where low power is critical, such as mobile platforms,

the Internet of Things (IoT), and embedded systems.

2 BACKGROUND

Although memcapacitive behaviors were observed in several composite de-

vices [20, 32, 40, 54, 56], only two models are currently available in the liter-

ature: the Biolek model [4] and the Mohamed model [29]. These two models

are selected for our studies.

The Biolek model describes a memcapacitive behavior of an ideal device

with a threshold. The memcapacitance C functions as an internal variable ρ

and is related to the electric charge q and the applied voltage VC [4]:

q(t) = CVC ,

dC

dt
= f (VC)W (C, VC) ,

where f() is a function that describes the threshold property and W () is a

window function. These functions are defined as:

f (VC) = β (VC − 0.5 [|VC + Vth| − |VC − Vth|]) ,

W (C, VC) = θ (VC) ∗ θ (Chigh − C) + θ (−VC) ∗ θ (C − Clow)

3



β is a device constant expressing how the memcapacitance C changes

when |VC | > Vth, Vth is a threshold voltage, θ() is a step function, and Clow

and Chigh are the minimum and maximum values of the device’s capacitance.
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FIGURE 1

Charge-voltage response of the Biolek model [4] and the Mohamed model [29].

The Mohamed model depicts the memcapacitive response of a metal-dioxide

device. The correlations of the device states (x and m), the memcapacitance

C, and applied voltage v are as following [29]:

q(t) = C(x,m, v, t)v(t),

ẋ =
dx

dt
= f (x, v, t) ,

ṁ =
dm

dt
= f (m, v, t) ,

where x is the filament growth due to ion migrations between the metal-

dioxide gap, m is the cross section area of the filament, and f() is a window

function defined in [3]. The memcapacitance C is a function of the device’s
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total capacitance. This function depends on the permittivity of the gap in-

sulator ε, the gap cross section A, and the maximum gap thickness d. The

derivatives of the state variables x and m model the growth/shrinkage of the

filament, which is controlled by the tunneling current it(t) and the capacitive

current ic(t) [29].

Fig. 1 shows the charge-voltage responses of the Biolek [4] model and the

Mohamed model [29]. As one can see, the responses follow a pinched hys-

teresis loop, which is the fundamental characteristic of a mem-device. The

threshold voltage of the Biolek model was set to 0.8V. The threshold voltage

was added to the original Mohamed model and the constants were modified

to deal with a low input frequency of 1Hz: KG = 0.4775,KS = 0.64, BG =

2.2475, BS = 2.75, xmin = 0.4, xmax = 0.9,mmin = 0.01,mmax =

0.9, d1 = 5× 10−10, and d2 = 5× 10−10.

3 PROPOSED MEMCAPACITIVE CIRCUITS

3.1 Memcapacitive Logic Gates

Logic gates form the fundamental building blocks of digital circuits and ar-

chitectures. It was proven that both memristors [25] and memcapacitive de-

vices [35] are capable of performing logic operations using material implica-

tions. Several studies have shown that logic gates can be realized with mem-

ristors [1, 8] and that such gates consume less power and allow for higher

integration densities than CMOS gates. The first design of memristive gates

was developed for fuzzy logic [24], which was extended to include sorting

networks [30]. It was show to be compatible with CMOS AND/OR func-

tionality [26]. The main idea for designing a memristive logic gate is based

on voltage division: several resistors connected in series can scale an ap-

plied voltage to different voltages according to their resistance values. Unlike

traditional fixed-value resistors, memristors have the ability to alter their re-

sistance to an ON state (low resistance) or OFF state (high resistance). The

voltages across them can therefore change dynamically. If the ON/OFF re-

sistance ratio is sufficiently large, each memristor in a memristive gate can

operate as a binary switch, analogous to a CMOS switch. Here, we apply the

same concept to memcapacitive gates since such devices, when connected in

series, can also scale voltages according to their dynamic capacitance.

Considering the 2-input gate in Fig. 2, Mca and Mcb are in series with

respect to inputs a and b. The electric charge is the same for both devices:
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FIGURE 2

2-input and 3-input memcapacitive AND gates.
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FIGURE 3

2-input and 3-input memcapacitive OR gates.

QMCa = QMCb,

(Va − Vy) ∗Mca = (Vy − Vb) ∗Mcb,

(Mca +Mcb) ∗ Vy = Va ∗Mca + Vb ∗Mcb,

Vy =
Va ∗Mca + Vb ∗Mcb

Mca +Mcb
. (4)

Assuming that Cmax >> Cmin with 0V for logic 0 and 1V for logic 1,

we consider four cases for the output Vy according to Eq. 4:

• V a = 0V, Vb = 0V : Vy = 0V
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• V a = 0V, Vb = 1V : with their connection polarities, Mca is switched

to Cmax, Mcb is switched to Cmin, and the output voltage is:

Vy =
Cmin

Cmax + Cmin

∗ Vb < VLH ≈ logic 0,

where VLH is the upper limit voltage for logic 0.

• V a = 1V, Vb = 0V : Mca is switched to Cmin, Mcb is switched to

Cmax, and the output voltage is:

Vy =
Cmin

Cmin + Cmax

∗ Va < VLH ≈ logic 0

• V a = 1V, Vb = 1V : the output voltage is:

Vy =
Mca +Mcb
Mca +Mcb

= 1V

The input combinations of a and b along with the output values of y con-

stitute the truth table of an AND gate.

Similarly, for the 2-input OR gate (Fig. 3) and from on the Eq. 4, we

consider four cases:

• V a = 0V, Vb = 0V : Vy = 0V

• V a = 0V, Vb = 1V : Mca is switched to Cmin, Mcb is switched to

Cmax, and the output voltage is:

Vy =
Cmax

Cmin + Cmax

∗ Vb > VHL ≈ logic 1,

where VHL is the lower limit voltage for logic 1.

• V a = 1V, Vb = 0V : with their connection polarities, Mca is switched

to Cmax, Mcb is switched to Cmin, and the output voltage is:

Vy =
Cmax

Cmax + Cmin

∗ Va > VHL ≈ logic 1

• V a = 1V, Vb = 1V : the output voltage is:

Vy =
Mca +Mcb
Mca +Mcb

= 1V
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Here, the input combinations of a and b and the corresponding output val-

ues y represent the truth table of an OR gate. Similarly, 3-input or 4-input

AND and OR memcapacitive gates can be built.

It is known [51] that any logic expression can be described as a combi-

nation of AND, OR, and NOT functions. The NOT function generally re-

quires an active element to complement its input signal. Since memcapac-

itive devices are passive, the NOT function cannot be implemented. As a

consequence, we still need to rely on a traditional CMOS inverter to obtain a

complete set of memcapacitive gates.

3.2 Memcapacitive Crossbar Classifier

Crossbar architectures are attractive due to the regularity and the integration

density. They have become more popular for memristive devices for these

reasons [5, 19, 36, 37]. It has previously been shown that a general memca-

pacitive crossbar network can be built [45] and that such a crossbar network

can perform a dot product [13].

For our purpose, we propose the memcapacitive crossbar network as shown

in Fig. 4. This network functions as a classifier and can perform a dot prod-

uct without the need of a processor and a memory as specified in [13]. In this

network, the memcapacitive devices are located at the nano-wire junctions.

Each column has a termination capacitor Coj that converts the total charge

in column j to an equivalent voltage Voj , which can then be measured. The

crossbar also has a bias column. In our previous work on memristor crossbar

architectures [52], we showed that a bias column is needed to compensate for

currents in columns where all memristive devices are at Rmax. Rmax repre-

sented a weight value of zero (W = 0), whereas Rmin represented a value of

one (W = 1). Without a bias column, Rmax will still produce a small cur-

rent in reality. The crossbar, which essentially computes a dot product, then

results in an actual zero value when the bias column is used to compensate

for the non-zero currents. This is essential for the training and testing of the

crossbar classifier.

We use the same approach for the memcapacitive crossbar classifier. From

an electrical point of view, Cmin (the minimum capacitance of a memcapac-

itive device) at a column still allows a small charging current. Compensating

for this current with the bias column ensures a zero dot product. In our mem-

capacitive crossbar network, all memcapacitive devices at the bias column

were set to their minimum capacitance, which is equivalent to a zero weight.

An inherent issue of any crossbar network is the effect of sneak-path cur-

rents. Several solutions have been proposed for memristive crossbar networks
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memcapacitor
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desired path

undesired path

C11 C12 C13 C1n Cmin

C21

C31

C41

Cm1

v1

Co1

output

capacitor

v2

v3

v4

vm

Co2 Co3 Con Cob

Coj

Bias

column

Cmin

Cmin

Cmin

Cmin

FIGURE 4

Memcapacitive crossbar network. The role of the termination output capacitors

Co1, Co2, Co3, Co4, Con is to convert the total electric charge q in each column j

to a corresponding voltage Voj.

to overcome this problem: multistage readings [48], unfolded networks [28],

complimentary reading algorithm [18], virtual ground [53], or adapting three-

terminal devices [59]. From Fig. 4, the undesired paths allow additional

charge from other columns to go to output capacitors Co1 and Co2, which

then hold the total charge at only columns 1 and 2.

For our memcapacitive crossbar, we propose a capacitive virtual ground

module as shown in Fig. 5 at each output column. The 0V ground reference,

provided by the OpAmp at each column j, eliminates all sneak-path currents.

With the absence of sneak-path currents, voltage pulses at the input rows

will charge the memcapacitive devices according to their internal capacitance
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Coj

+

-

the output

of column j

iCoj

Voj

FIGURE 5

Virtual ground module. The OpAmp provides a virtual ground. Charge from output

column j is compensated by charging or discharging currents through the capacitor

Coj .

states ρ. The total charge at a particular column j is then accumulated and

transferred to the output capacitor Coj in the virtual ground module. The total

charge Qj at column j is given by:

Qj =

m
∑

i=1

qi,j − qbias, (5)

where qi,j is the electric charge stored in a memcapacitive device at the con-

nective junction (i, j) and qbias is the total electric charge of the bias column.

The subtractive term qbias ensures that the total charge Qj is zero when

all memcapacitive devices at column j are at their minimum capacitance.

Expanding and simplifying Eq. 5, the output voltage Voj at output column j

becomes:

Qj =

m
∑

i=1

ViCi,j −

m
∑

i=1

ViCmin

(−Voj)Coj =

m
∑

i=1

ViCi,j −

m
∑

i=1

ViCmin

−Voj =

m
∑

i=1

Vi

(

Ci,j − Cmin

Coj

)

, (6)

where Ci,j is the capacitance of a memcapacitive device at junction (i, j),

bounded by the interval [Cmin, Cmax].

Eq. 6 shows that the output voltage at column j is proportional to the

device capacitance Ci,j and Cmin, the input voltage Vi, and the output ca-

pacitance Coj . The output voltage Voj is independent of charge Qj , the total
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charge of all memcapacitive devices at column j. As a result, our memca-

pacitive crossbar does not suffer the large effect of charge leakage as reported

in [60] for a MOS-gated memristor array.

4 RESULTS

4.1 Mem-devices in Logic Applications

We used a pulse width tw and an amplitude vp to represent logic 1. To verify

the logic gates, pulses were generated from the signal sources to simulate

all the input states of a n-input gate. In addition, we measured the average

power consumption of the memcapacitive gates and compared the values with

equivalent memristive as well as CMOS gates.

According to [24], a valid output voltage of a memristive gate depends

significantly on the changing states (switching from RON to ROFF or vice

versa) of the device and a high ratio of ROFF and RON . This changing state

is linked to two physical factors of a memristive device, which vary from

device to device: threshold voltage vth and switching time ts. An applied

pulse has to be sufficiently large (vp > 2vth) and long (tw > ts) so that the

memristive devices can change their internal states and produce the correct

outputs. Table 1 lists the switching times of all mem-devices we used here.

Model
Dev

Pulse Switching Time of ρ

Ampl Width
min → max max → min

Type vp tw
Biolek [4] C 2.4 2.0µs 0.79µs 0.80µs

Mohamed [29] C 2.4 3.0s 1.15s 0.53s

Chang [6] R 2.4 7.0ps 5.12ps 2.23ps

Oblea [31] R 2.4 500µs 200.31µs 450.62µs

Sheridan [42] R 4.85 60µs 34.51ns 23.63ns

TABLE 1

Switching times of mem-devices. C stands for a memcapacitive and R for a

memristive device. ρ is the internal state of a device. Each device was tested with a

single pulse of amplitude vp and width tw. The switching time was determined by

measuring the change of its internal state from 1% to 98% (min → max) or from

98% to 1% (max → min) of its initial value.
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We selected three memristive models in Table 1 for their stability and their

high ROFF /RON ratio. The Oblea device had the lowest switching time of

450.62µs (at the exception of the Mohamed device). We therefore used logic

pulses of 500µs for all simulated mem-device gates and 3s pulses for the

Mohamed memcapacitive gates. Note that the switching time of the Mohamed

memcapacitive gate was so long because of the very slow convergence of

the device’s internal state from 1% to 98% of Rhomax once it passed the

90% point. The original Mohamed memcapacitive model was developed for

an input signal of 1V at 28.75MHz. We modified the model constants to

accommodate a low frequency pulse signal. We targeted that time because we

intended to use the memcapacitive device as a biologically plausible artificial

synapse [39, 43]. After a complete cycle, reset pulses were applied to reset

the output of a gate before a new cycle began.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (ms)

0

0
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0

0
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Dynamic Hazards
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(MemR)
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FIGURE 6

Timing diagrams of the 3-input AND gates (Sheridan memristive gate and Biolek

memcapacitive gate). Each pulse was 500µs long. The bit values (0’s and 1’s) were

added to show the input combinations of Va, Vb, and Vc. Vo(MemR) is the output of

the memristive gate and Vo(MemC) is the output of the memcapacitive gate.
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Since a mem-device inverter cannot be built, we used CMOS inverters

to build NAND, NOR, and XOR gates. For the full adder mem-device cir-

cuits, we utilized the mem-CMOS hybrid design of Cho et al. [8]. Their

results showed that multilayer memristor-MOS circuits can implement any

basic logic gate, such as AND, OR, NAND, NOR, and XOR.

Fig. 6 shows the timing diagram of the 3-input mem-device AND gates.

The bit values (0’s and 1’s) were added to show all input combinations.

Vo(MemR) and Vo(MemC) show the outputs for the memristor and the

memcapacitor gate respectively. Similar to memristive gates, our memcapac-

itive gates also showed dynamic hazards, a common phenomenon for mem-

ristive gates [26]. Dynamic hazards occurred when the mem-devices switched

their internal state ρ (from ρmin → ρmax and vice versa). Within these tran-

sition times, the output logic was undefined.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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−1
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V
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FIGURE 7

Dynamic logic hazards of 3-input memcapacitive AND(-) and NOR(–) gates using the

Biolek model. The inset shows the output values in the interval [1999µs, 2002µs].

With a 500µs pulse, the spike width of a logic hazard was about 0.8µs for the mem-

capacitive AND gate and about 0.6µs for the memcapacitive NOR gate.
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The inset in Fig. 7 shows a dynamic hazard of the memcapacitive AND

and NOR gates in the interval [1999µs, 2002µs]. The spike width estimates

were 0.8µs and about 0.6µs for AND and NOR gates respectively. With a

pulse width of 500µs, dynamic hazards can be potentially avoided by adding

a time delay before reading the outputs. Another approach to remove dynamic

hazards is to add buffers or inverters along the signal paths to restore the logic

signals [26].

AND OR XOR Full Adder
(FA)

10-1

100
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102

103
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P
o
w
e
r 
(µ
W

)

Biolek (MemC)
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Chang (MemR)

Oblea (MemR)
Sheridan (MemR)
CMOS (32nm)

FIGURE 8

Power consumption of the mem-device logic and CMOS gates. The Biolek and Mo-

hamed gates are memcapacitive gates, the rest are memristive gates. The overall win-

ners for the mem-device gates were the Mohamed memcapacitive gates.

Fig. 8 shows the power consumptions for the mem-device gates as well as

for 32nm CMOS gates. The power consumption was determined with SPICE

by using RMS measurements of voltages and currents over a complete cycle

of 2n pulses (where n is the number of inputs of a gate). For AND and OR

gates, the Sheridan memristive gates consumed less power than the Biolek

memcapacitive gates. The overall winners were the Mohamed memcapaci-
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tive gates. Furthermore, the Sheridan memristive gates required a 4.8V pulse

amplitude whereas the memcapacitive gates only needed 2.4V. A lower volt-

age can be an advantage for interfacing with CMOS devices that are operated

in a low-power mode [10].

The memcapacitive circuits outperformed the memristive circuits in terms

of power consumption for XOR and FA. Compared to CMOS gates, the Mo-

hamed memcapacitive AND and OR gates used less power. The memca-

pacitive XOR and full adder circuits, however, used more power than CMOS

circuits due the CMOS inverters that are needed to implement NOT functions.

In fact, the power consumptions of the CMOS inverters for the mem-device

XOR and full adder circuits contributed about 95% to the total power con-

sumptions.

Gate BiolekC4 Mohamed Chang Oblea Sheridan CMOS

MemC MemC MemR MemR MemR 32nm

(µW ) (µW ) (µW ) (µW ) (µW ) (µW )

2-input AND 53.15 0.29 35.49 4,174.03 4.55 3.59

3-input AND 84.87 0.78 68.44 6,479.05 8.37 4.76

4-input AND 83.83 0.91 104.72 7,492.31 10.94 5.91

2-input OR 47.91 0.29 35.49 4,174.03 4.25 3.60

3-input OR 51.41 0.39 83.50 6,658.72 8.29 4.77

4-input OR 45.99 0.47 123.67 7,516.97 14.06 5.93

2-input NAND 54.46 2.19 57.83 4,184.75 297.05 2.80

3-input NAND 85.54 2.99 91.01 6,489.45 363.69 3.91

4-input NAND 84.73 3.35 132.97 7,501.04 380.42 5.00

2-input NOR 6.09 1.73 63.70 4,180.42 296.74 2.63

3-input NOR 224.96 2.30 117.31 6,667.63 366.31 3.73

4-input NOR 10.27 2.30 158.12 7,525.44 392.41 4.84

2-input XOR 57.09 8.36 102.45 4,198.28 542.09 5.62

3-input XOR 53.81 10.16 176.13 5,263.60 965.53 9.88

1-input FA 151.34 45.27 273.17 10,993.10 1,164.14 22.12

2-input FA 213.10 85.18 584.06 13,367.40 2,611.59 41.50

TABLE 2

Summary of mem-device gates’ power consumption. Logic pulses of vp and tw
were applied to simulate all input combinations. CMOS inverters were used for the

mem-based NAND, NOR, XOR, and FAs.

Table 2 summarizes the results of our simulations. CMOS inverters were
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used for the mem-based NAND, NOR, XOR, and FAs. We compared the

average power consumptions of the memristive gates (Chang, Oblea, and

Sheridan) and the CMOS gates with those of the Mohamed memcapacitive

gates (the overall winners) for power saving factors. The results of the power

saving factors are shown in Table 3.

Gate
Chang Oblea Sheridan CMOS

MemR MemR MemR 32nm

AND 105.4 9169.4 12.1 7.2

OR 212.1 16 039.1 23.3 12.5

NAND 33.0 2131.0 122.1 1.4

NOR 53.6 2901.2 166.7 1.8

XOR 15.0 510.7 81.4 0.8

FA 6.6 186.7 28.9 0.5

TABLE 3

Power saving factors when comparing the average power consumptions of the mem-

ristive gates and the CMOS gates with those of the Mohamed memcapacitive gates.

These results show that memcapacitive gates are a promising option for

implementing low-power digital logic circuits.

4.2 Mem-devices in Crossbar Classifiers

A classifier often functions as an output layer, for example in deep learning

networks for image processing and pattern recognition. In a pattern recogni-

tion application, a classifier is trained in a supervised way, in which expected

outputs are provided along with the input images. Once the training process

is completed, the classifier is tested with a different set of image data for

how well it can recognize similar patterns. We trained and tested our mem-

device crossbar classifiers with two typical datasets: MNIST [11] and CIFAR-

10 [27]. The MNIST dataset contains handwritten digits of size 28×28. This

dataset has 60,000 training and 10,000 testing images. The CIFAR-10 dataset

is a collection of 60,000 color images of size of 32×32, which is divided into

50,000 training and 10,000 testing images. There are 10 different classes of

objects.

Fig. 9 shows an example of a network performing pattern recognition

that we employed for training and testing our memcapacitive classifiers. In

this network, training and testing images are divided into smaller patches of
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FIGURE 9

An example of an artificial network that performs image recognition.

pixel values. The converter then converts image pixels into input values for

the coder. The coder encodes the pixel inputs, aggregates these inputs into

higher-order features of input images, and produces input vectors for training

and testing the classifiers.

We first trained the mem-device crossbar classifiers and then tested the

classification performance. We also calculated the average power consump-

tion per image for both the training and testing phases.

The training stage of a classifier, particularly a mem-device crossbar clas-

sifier, was composed of two phases: the inference phase and the update phase.

In the inference phase, the outputs of the classifier were collected with applied

training data while the internal states of mem-devices remained unchanged.

We normalized the input vectors to ensure that the input voltages were less

than the threshold voltages for the mem-devices and that the mem-devices

did not change their internal states during the inference phase. In the update

phase each mem-device was updated individually based on the feedback from

a supervised learner. The supervised learner used gradient descent with back-

propagation to determine how to update each mem-device with a 250µs pulse.

The 250µs pulse is specific to the Chang memristive device and we used it

for all classifiers. Once the classifiers were trained, they were tested with

test images for clarifications. Both the training and testing stages were per-

formed in Python. The average power was determined as the average power

consumed by all mem-devices during the inference phase, the update phase,
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FIGURE 10

Classification performance and power consumption of the mem-device classifiers for

the MNIST dataset. The power measurements do not include the power consumption

of the virtual ground modules.

and the testing phase.

Fig. 10 shows the simulation results of the mem-device classifiers for the

MNIST dataset. The mem-device crossbar had a size of 1568 × 10. The

classifier size was determined by the input image vectors. These vectors were

generated by the sparse and independent local network (SAILnet) algorithm

for the MNIST dataset, which has 14× 14 patches with over-completeness of

2. SAILnet utilized an improved model to represent a more realistic response

of a mammalian visual cortex [61]. The results show that our memcapacitive

classifiers performed similarly compared to the memristive classifiers while

they consumed less power per image on average. As one can see, the Biolek

memcapacitive classifier has the lowest power consumption of all models.

Fig. 11 compares the simulation results of the mem-device classifiers for

the CIFAR-10 dataset. In order to maintain a reasonable size of our mem-
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FIGURE 11

Classification performance and power consumption of the mem-device classifiers for

the CIFAR-10 dataset. The power measurements do not include the power consump-

tion of the virtual ground modules.

device classifiers (such as 4508×10), the color images were converted to gray

scale images for training and testing. Furthermore, a whitening process was

applied to the input images in order to reduce the highly correlated adjacent

pixels, which showed to improve both the training time and performance [14].

The length of each input image vector determined the size of the classifiers.

For CIFAR-10, the SAILnet algorithm generated the input vectors of 16× 16

patches and an over-completeness of 2.

As one can see from Fig. 11, the memcapacitive classifiers did not reach

the performance of memristive classifiers, but they consumed less power. The

performance of memcapacitive classifiers correlated directly with the setting

parameters (the learning rate α, the update pulse width tw, the update pulse

amplitude vw, and the offset voltage voffset) during the training phase. These

parameters were chosen based on experiments.
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We suspect that the memcapacitive classifiers do not reach the perfor-

mance of the memristive classifiers for the following reason: since we do not

have positive and negative weights, voffset is used to so that weight W is set

between Cmin and Cmax after a training phase. If voffset is low, most weights

are bound to Cmin. If voffset is high, most weights are set to Cmax. For the

MNIST dataset, the inputs are very sparse and we can, therefore, find a rea-

sonably good value of voffset experimentally. On the other hand, the inputs of

the CIFAR-10 dataset are not sparse enough. As a result, a small change in

voffset causes the entire weight matrix to be shifted to either Cmin or Cmax.

The memristive classifiers seem to be less sensitive to the voffset value, and,

therefore, perform better.

Model

Device
Dataset

MNIST CIFAR-10

Type
Perf. Crossbar Perf. Crossbar

(%) (mW ) (%) (mW )

Chang [6] MemR 76.52 47.607 35.32 98.353

Oblea [31] MemR 83.08 93.407 37.65 307.320

Biolek [4] MemC 72.40 0.060 28.02 0.260

Mohamed [29] MemC 81.13 21.407 21.64 150.301

TABLE 4

Summary of the classification performance and power consumption. The power mea-

surements do not include the power consumption of the virtual ground modules. The

power measurements were averaged over each image for both the training and testing

phases.

Table 4 shows a summary of the simulation results. Using the average

power consumption of the Biolek memcapacitive classifier as a reference, we

compared its results with those of the Chang and Oblea classifiers. For the

MNIST dataset, the Biolek classifier could achieve equal classification per-

formance and save power by factors of 797× and 1565× respectively. For

the CIFAR-10 dataset, the Biolek classifier saved power by factors of 378×

and 1181×.
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5 DISCUSSION

As it was shown in Table 1, the Oblea device has the slowest settling time with

the exception of the Mohamed device. As a result, we used 500µs pulses

to test all mem-device logic gates. Operating mem-device logic gates with

500µs pulses is quite slow compared to CMOS logic gates. However, the

Biolek memcapacitive logic gates with a smaller switching time are capable

to operate with 2µs pulses.

Both memristive and memcapacitive gates suffered the effect of dynamic

hazards. Dynamic hazards occurred when the mem-devices of a gate switched

their internal states. Therefore, a delay time was required before the gate’s

output could be read. This delay time is similar to the setup time in a CMOS

gate, although the CMOS setup time is much smaller. Recent studies have

shown that new memristive devices can switch their internal states much

faster (in the range of ns and ps) [9, 21]. A faster switching time would

imply less dynamic hazards.

The Mohamed memcapacitive XOR and the full adder circuits did not out-

perform the CMOS circuits in terms of power consumption. However, about

95% of the power consumption was due to the CMOS inverters and transistors

that are required for the gates in addition to the mem-devices.

The performance of the memcapacitive classifiers depends on how the

memcapacitive devices are updated. The process involves setting four pa-

rameters: the learning rate α, the update pulse width tw, the update pulse

amplitude vw, and the offset voltage voffset. These parameters were based on

experiments. A systematic exploration of the parameter space is beyond the

scope of this paper. We expect that the classification performance can be

further increased with better parameters.

Moreover, virtual ground modules played an essential role in alleviating

the effect of sneak-path currents within the crossbar networks. We have left

out the power figures for these modules because they are highly technology-

dependent.

6 CONCLUSION

Our work has shown that low-power memcapacitive logic circuits can be im-

plemented. The memcapacitive gates consumed about 7× less power com-

pared to memristive logic gates. The lack of a mem-inverter makes the pos-

sible logical basis incomplete. The inverter operation, by its nature, requires

an active element to reverse its input signal, which cannot be realized by pas-
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sive mem-devices. Used for classifiers, memcapacitive devices were shown

to reduce the power consumption by a factor of 1, 500× for MNIST and a fac-

tor of 1, 000× for CIFAR-10. For the classifier, we relied on virtual ground

modules, which remove the effects of sneak-path currents, but consume sig-

nificant power. Finding other options to eliminate sneak-path currents without

the need of virtual ground modules could further lower the power consump-

tion.
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