6 research outputs found

    NLP-Based Techniques for Cyber Threat Intelligence

    Full text link
    In the digital era, threat actors employ sophisticated techniques for which, often, digital traces in the form of textual data are available. Cyber Threat Intelligence~(CTI) is related to all the solutions inherent to data collection, processing, and analysis useful to understand a threat actor's targets and attack behavior. Currently, CTI is assuming an always more crucial role in identifying and mitigating threats and enabling proactive defense strategies. In this context, NLP, an artificial intelligence branch, has emerged as a powerful tool for enhancing threat intelligence capabilities. This survey paper provides a comprehensive overview of NLP-based techniques applied in the context of threat intelligence. It begins by describing the foundational definitions and principles of CTI as a major tool for safeguarding digital assets. It then undertakes a thorough examination of NLP-based techniques for CTI data crawling from Web sources, CTI data analysis, Relation Extraction from cybersecurity data, CTI sharing and collaboration, and security threats of CTI. Finally, the challenges and limitations of NLP in threat intelligence are exhaustively examined, including data quality issues and ethical considerations. This survey draws a complete framework and serves as a valuable resource for security professionals and researchers seeking to understand the state-of-the-art NLP-based threat intelligence techniques and their potential impact on cybersecurity

    Some Guidelines for Risk Assessment of Vulnerability Discovery Processes

    Get PDF
    Software vulnerabilities can be defined as software faults, which can be exploited as results of security attacks. Security researchers have used data from vulnerability databases to study trends of discovery of new vulnerabilities or propose models for fitting the discovery times and for predicting when new vulnerabilities may be discovered. Estimating the discovery times for new vulnerabilities is useful both for vendors as well as the end-users as it can help with resource allocation strategies over time. Among the research conducted on vulnerability modeling, only a few studies have tried to provide a guideline about which model should be used in a given situation. In other words, assuming the vulnerability data for a software is given, the research questions are the following: Is there any feature in the vulnerability data that could be used for identifying the most appropriate models for that dataset? What models are more accurate for vulnerability discovery process modeling? Can the total number of publicly-known exploited vulnerabilities be predicted using all vulnerabilities reported for a given software? To answer these questions, we propose to characterize the vulnerability discovery process using several common software reliability/vulnerability discovery models, also known as Software Reliability Models (SRMs)/Vulnerability Discovery Models (VDMs). We plan to consider different aspects of vulnerability modeling including curve fitting and prediction. Some existing SRMs/VDMs lack accuracy in the prediction phase. To remedy the situation, three strategies are considered: (1) Finding a new approach for analyzing vulnerability data using common models. In other words, we examine the effect of data manipulation techniques (i.e. clustering, grouping) on vulnerability data, and investigate whether it leads to more accurate predictions. (2) Developing a new model that has better curve filling and prediction capabilities than current models. (3) Developing a new method to predict the total number of publicly-known exploited vulnerabilities using all vulnerabilities reported for a given software. The dissertation is intended to contribute to the science of software reliability analysis and presents some guidelines for vulnerability risk assessment that could be integrated as part of security tools, such as Security Information and Event Management (SIEM) systems
    corecore