

ABSTRACT

Title of Dissertation: Some Guidelines for Risk Assessment of

Vulnerability Discovery Processes

 Yazdan Movahedi, Doctor of Philosophy, 2019

Dissertation directed by: Associate Professor Michel Cukier, Department

of Mechanical Engineering

Software vulnerabilities can be defined as software faults, which can be exploited as

results of security attacks. Security researchers have used data from vulnerability

databases to study trends of discovery of new vulnerabilities or propose models for

fitting the discovery times and for predicting when new vulnerabilities may be

discovered. Estimating the discovery times for new vulnerabilities is useful both for

vendors as well as the end-users as it can help with resource allocation strategies over

time.

Among the research conducted on vulnerability modeling, only a few studies

have tried to provide a guideline about which model should be used in a given situation.

In other words, assuming the vulnerability data for a software is given, the research

questions are the following: Is there any feature in the vulnerability data that could be

used for identifying the most appropriate models for that dataset? What models are

more accurate for vulnerability discovery process modeling? Can the total number of

publicly-known exploited vulnerabilities be predicted using all vulnerabilities reported

for a given software?

To answer these questions, we propose to characterize the vulnerability

discovery process using several common software reliability/vulnerability discovery

models, also known as Software Reliability Models (SRMs)/Vulnerability Discovery

Models (VDMs). We plan to consider different aspects of vulnerability modeling

including curve fitting and prediction.

Some existing SRMs/VDMs lack accuracy in the prediction phase. To remedy

the situation, three strategies are considered: (1) Finding a new approach for analyzing

vulnerability data using common models. In other words, we examine the effect of data

manipulation techniques (i.e. clustering, grouping) on vulnerability data, and

investigate whether it leads to more accurate predictions. (2) Developing a new model

that has better curve filling and prediction capabilities than current models. (3)

Developing a new method to predict the total number of publicly-known exploited

vulnerabilities using all vulnerabilities reported for a given software.

The dissertation is intended to contribute to the science of software reliability

analysis and presents some guidelines for vulnerability risk assessment that could be

integrated as part of security tools, such as Security Information and Event

Management (SIEM) systems.

SOME GUIDELINES FOR RISK ASSESSMENT OF VULNERABILITY

DISCOVERY PROCESSES

by

Yazdan Movahedi

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

2019

 Advisory Committee:

Associate Professor Michel Cukier, Chair

Professor Rance Cleaveland, Dean’s Representative

Professor Mohammad Modarres

Professor Jeffrey W. Herrmann

Assistant Professor Katrina Groth

© Copyright by

Yazdan Movahedi

2019

ii

Acknowledgements

Over the past four years, I have met many incredible people who have

contributed to this significant personal and professional achievement. I would like to

thank each and every one who has supported me, encouraged me and helped me

throughout this path.

First, I would like to thank my committee members Dr. Mohammad Modarres,

Dr. Rance Cleaveland, Dr. Jeffrey Herrmann, and Dr. Katrina Groth for their insightful

and valuable feedback.

I am very thankful to my advisor, Dr. Michel Cukier, who gave me the

opportunity to study at the University of Maryland. This dissertation would not have

been possible without his guidance and support.

I also had the great opportunity to collaborate with Dr. Ilir Gashi and his

research team from the City University in London, over the course of my graduate

studies. I would like to express my gratitude to Dr. Gashi who never withholds his

advice and support in all the time of research.

On a more personal note, moving to a foreign country was not always easy, but

I was lucky to build many great friendships along the way: Mehdi, Sanaz, Ali, Daniel,

Elaheh, Roohollah, Parastoo, Peyman, Miead, Fatimah, and Amin.

I would like to thank my family. This journey would not have been possible

without the support of my family. You have always been there when I needed you. I

admire how supportive you are; you taught me to never give up, and it is thanks to you

that I have made it to where I am now.

iii

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii

List of Tables ... ix

List of Figures .. xi

Chapter 1: Introduction ... 1

1.1 Background and Motivation .. 1

1.2 Research Questions and Approaches .. 2

1.3 Contributions ... 3

1.4 Dissertation Outline... 5

Chapter 2: Literature Review .. 6

2.1 Vulnerability Databases .. 6

2.1.1 NVD database ... 6

2.1.2 CVE database ... 8

2.1.3 SecurityFocus ... 9

2.1.4 CXSecurity/WLB2 ... 9

2.1.3 Exploit database (EDB) .. 10

2.2 Vulnerability Risk Assessment and Modeling: Software Level 10

2.3 Vulnerability Risk Assessment and Modeling: Vulnerability Level 13

2.3.1 Based on source code ... 13

2.3.2 Based on vulnerability lifecycle ... 15

2.3.3. Based on CVSS metrics ... 16

2.3.4. Based on system calls .. 16

2.4 Methods of Analysis & Risk Assessment Strategies .. 17

2.4.1 Cluster-based analysis .. 17

iv

2.4.2. Machine learning ... 19

2.4.3. Optimal patch planning ... 20

2.5. Guidelines for Vulnerability Discovery Models .. 21

Chapter 3: Datasets and Models ... 23

3.1 Introduction ... 23

3.2 Vulnerability Dataset Creation .. 23

3.3 Vulnerability Dataset Overview .. 24

3.3.1 Operating systems... 25

3.3.2 Web browsers ... 25

3.4 Datasets Characterization .. 26

3.5 S-shaped Vulnerability Discovery Models ... 27

3.5.1. Gamma-based VDM .. 29

3.5.2 Weibull-based VDM... 30

3.5.3 AML VDM ... 31

3.5.4 Normal-based VDM ... 31

3.5.5 Younis Folded VDM .. 32

3.6 Non-S-shaped Vulnerability Discovery Models ... 33

3.6.1 Power-law Software Reliability Growth Models (SRGM-based) 33

3.6.2 Rescorla Exponential (RE) ... 34

3.6.3 Rescorla Quadratic (RQ) .. 35

3.7 Summary ... 35

Chapter 4: Non Cluster-based Vulnerability Assessment ... 36

4.1 Introduction ... 36

4.2 Motivation ... 36

4.3 Analysis ... 37

v

4.3.1 Curve-fitting error indicators .. 38

4.3.2 Prediction error indicators .. 39

4.4 Curve-Fitting Results .. 40

4.4.1 Operating systems... 40

4.4.2 Web browsers ... 43

4.3.4 Summary of Estimation Results ... 45

4.5 Prediction Results .. 45

4.5.1 Operating systems... 46

4.5.2 Web browsers ... 47

4.5.4 Summary of prediction results .. 49

4.6 Discussion ... 49

4.7 Limitations .. 50

4.8 Summary ... 51

Chapter 5: Clustering .. 52

5.1 Introduction ... 52

5.2 Motivation ... 52

5.3 Data Processing ... 53

5.4 Clustering Method ... 55

5.4.1 Operating systems... 56

5.4.2 Web browsers ... 56

5.5 Analysis ... 57

5.6 Curve-Fitting Results .. 59

5.6.1 Operating systems... 59

5.6.2 Web browsers ... 61

5.6.3 Summary of Curve-Fitting Results ... 63

vi

5.7 Prediction Results .. 63

5.7.1 Operating systems... 64

5.7.2 Web browsers ... 66

5.7.3 Summary of Prediction Results .. 67

5.8 Discussion ... 68

5.9 Limitations .. 69

5.10 Summary ... 70

Chapter 6: A Comparison of Vulnerabilities’ Grouping Strategies 71

6.1 Introduction ... 71

6.2 Motivation ... 71

6.3 Grouping Strategy ... 72

6.4 Analysis ... 74

6.4.1 Curve-fitting error indicators .. 75

6.4.2 Prediction error indicators .. 76

6.5 Curve-Fitting Results .. 76

6.5.1 Operating systems... 76

6.5.2 Web browsers ... 78

6.5.3 Summary of curve-fitting results .. 79

6.6 Prediction Results .. 80

6.6.1 Operating systems... 80

6.6.2 Web browsers ... 81

6.6.3 Summary of prediction results .. 83

6.7 Discussion ... 83

6.8 Limitations .. 85

6.9 Summary ... 86

vii

Chapter 7: Vulnerability Prediction Capability: A Comparison between Vulnerability

Discovery Models and Neural Network Models .. 88

7.1 Introduction ... 88

7.2 Motivation ... 88

7.3 Data Processing ... 89

7.4 Neural Network Model (NNM)... 92

7.5 Analysis ... 96

7.6 Results ... 97

7.7 Discussion ... 101

7.8 Limitations .. 103

7.9 Summary ... 104

Chapter 8: Predicting Exploited Vulnerabilities ... 105

8.1 Introduction ... 105

8.2 Motivation ... 105

8.3 Data Processing ... 107

8.4 Analytical steps of scenario S1 ... 109

8.4.1 For VDMs ... 109

8.4.2 For the NNM .. 111

8.5 Analysis ... 112

8.6 Results ... 114

8.6.1 Summary of Results.. 122

8.7 Discussion ... 122

8.8 Limitations .. 123

8.9 Summary ... 124

Chapter 9: Proposed Future Work and Summary of Completed Work 126

viii

9.1 Introduction ... 126

9.2 Summary of the research questions and contributions 126

9.2.1 Summary of dissertation and research questions 126

9.2.2 Summary of contributions .. 127

9.3 Summary of Published Work .. 129

9.3.1 Published work ... 129

9.3.2 Additional completed work .. 130

9.4 Future Work .. 131

Appendices .. 132

Appendix A: Clustering Tables ... 132

Bibliography ... 139

ix

List of Tables

TABLE 1: NUMBER OF VULNERABILITIES PER SOFTWARE ..26

TABLE 2: SKEWNESS VALUES PER SOFTWARE ...27

TABLE 3: CURVE FITTING ACCURACY FOR OSS ..42

TABLE 4: CURVE FITTING ACCURACY FOR WEB BROWSERS ...43

TABLE 5: PREDICTION ACCURACY FOR OSS ...46

TABLE 6: PREDICTION ACCURACY FOR WEB BROWSERS ..48

TABLE 7: CURVE FITTING ACCURACY FOR WINDOWS ..60

TABLE 8: CURVE FITTING ACCURACY FOR MAC ..60

TABLE 9: CURVE FITTING ACCURACY FOR IOS ..60

TABLE 10: CURVE FITTING ACCURACY FOR LINUX ..61

TABLE 11: CURVE FITTING ACCURACY FOR IE ...62

TABLE 12: CURVE FITTING ACCURACY FOR SAFARI ..62

TABLE 13: CURVE FITTING ACCURACY FOR FIREFOX ..62

TABLE 14: CURVE FITTING ACCURACY FOR CHROME ..62

TABLE 15: PREDICTION ACCURACY FOR WINDOWS ...65

TABLE 16: PREDICTION ACCURACY FOR MAC ...65

TABLE 17: PREDICTION ACCURACY FOR IOS ..65

TABLE 18: PREDICTION ACCURACY FOR LINUX ...65

TABLE 19: PREDICTION ACCURACY FOR IE ..66

TABLE 20: PREDICTION ACCURACY FOR SAFARI ...66

TABLE 21: PREDICTION ACCURACY FOR FIREFOX ...67

TABLE 22: PREDICTION ACCURACY FOR CHROME ...67

TABLE 23: MODELING GUIDELINE ..69

TABLE 24: PERCENTAGE OF COMMON VULNERABILITIES WITHIN FIREFOX VERSIONS.. .73

TABLE 25: NUMBER OF VULNERABILITIES PER SOFTWARE ...74

TABLE 26: CURVE FITTING ACCURACY FOR OSS (ST.1) ..77

TABLE 27: CURVE FITTING ACCURACY FOR OSS (ST.2) ..77

TABLE 28: CURVE FITTING ACCURACY FOR WEB BROWSERS (ST.1)78

TABLE 29: CURVE FITTING ACCURACY FOR WEB BROWSERS (ST.2)79

x

TABLE 30: PREDICTION ACCURACY FOR WEB BROWSERS (ST.1)81

TABLE 31: PREDICTION ACCURACY FOR OSS (ST.2) ..81

TABLE 32: PREDICTION ACCURACY FOR WEB BROWSERS (ST.1)82

TABLE 33: PREDICTION ACCURACY FOR WEB BROWSERS (ST.2)82

TABLE 34: SUMMARY OF SELECTED MODELS PER DATASET (CURVE-FITTING).............84

TABLE 35: SUMMARY OF SELECTED MODELS PER DATAS ET (PREDICTION)84

TABLE 36: NUMBER OF VULNERABILITIES PER SOFTWARE ...90

TABLE 37: PREDICTION ACCURACY FOR OSS (VDMS & NNM)98

TABLE 38: PREDICTION ACCURACY FOR WEB BROWSERS (VDMS & NNM)99

TABLE 39: NUMBER OF VULNERABILITIES PER SOFTWARE (ALL VS. EXPLOITED)108

TABLE 40: TABLE OF TTVN MEAN RATIOS PER SOFTWARE ..111

TABLE 41: PREDICTION ACCURACY FOR OSS PER SCENARIO (VDMS & NNM)116

TABLE 42: PREDICTION ACCURACY FOR WEB BROWSERS PER SCENARIO (VDMS &

NNM)….. ...118

TABLE 43: NUMBER OF VULNERABILITIES PER OS ...132

TABLE 44: NUMBER OF VULNERABILITIES PER TYPE AND OS.......................................132

TABLE 45: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (WINDOWS)133

TABLE 46: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (MAC)133

TABLE 47: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (IOS)134

TABLE 48: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (LINUX)134

TABLE 49: CLUSTER COMPOSITION FOR OSS ...135

TABLE 50: NUMBER OF VULNERABILITIES PER WEB BROWSER135

TABLE 51: NUMBER OF VULNERABILITIES PER TYPE AND WEB BROWSER136

TABLE 52: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (INTERNET EXPLORER)

…………..136

TABLE 53: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (SAFARI)137

TABLE 54: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (FIREFOX)...................137

TABLE 55: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (CHROME)138

TABLE 56: CLUSTER COMPOSITION FOR WEB BROWSERS ..138

xi

List of Figures

 OVERALL VIEW OF A DISTRIBUTION WITH (A) NEGATIVE SKEWNESS, (B)

APPOXIMATELY ZERO SKEWNESS, AND (C) POSITIVE SKEWNESS27

 THREE PHASES FOR S-SHAPED MODELS ..29

 FITTED MODELS FOR OPERATING SYSTEMS ...41

 FITTED MODELS FOR WEB BROWSERS ...44

 NORMALIZED PREDICTION ERROR VALUES FOR THE MODELS (OSS)47

 NORMALIZED PREDICTION ERROR VALUES FOR THE MODELS (WEB BROWSERS)

…………..48

 DIAGRAM OF THE PRESENTED CLUSTERING APPROACH.................................54

 HISTOGRAM OF THE NUMBER OF DETECTED VULNERABILITIES PER 30 DAYS

TOGETHER WITH ITS 180-DAYS MOVING AVERAGE FOR THE STUDIED OSS..91

 HISTOGRAM OF THE NUMBER OF DETECTED VULNERABILITIES PER 30 DAYS

TOGETHER WITH ITS 180-DAYS MOVING AVERAGE FOR THE STUDIED WEB

BROWSERS.. ..91

 THE NNM ARCHITECTURE USED FOR OUR STUDY93

 PREDICTION ERRORS FOR OSS. THE X-AXIS INDICATES TIME (YEAR). THE Y-

AXIS REPRESENTS NORMALIZED PREDICTION ERROR VALUES ((Ω𝑡 − Ω)/Ω). ...99

 PREDICTION ERRORS FOR WEB BROWSERS.. ..100

 PERCENTAGE OF EXPLOITED VULNERABILITIES PER SOFTWARE109

 BOX CHART FOR TTNV COEFFICIENT RATIO PER OS (S2/S1)110

 BOX CHART FOR TTNV COEFFICIENT RATIO PER WEB BROWSER (S2/S1) .111

 PREDICTION ERRORS FOR OSS PER SCENARIO.. ...117

 PREDICTION ERRORS FOR WEB BROWSERS PER SCENARIO..119

1

Chapter 1: Introduction

1.1 Background and Motivation

Vulnerabilities are software faults, that have the potential to be exploited as

results of security attacks [1]. The process of vulnerability risk assessment can be

investigated from two different perspectives: (1) based upon the influence

vulnerabilities have on software, or (2) based upon the risk which is associated with a

single vulnerability [2].

At the software level, the risk of detecting new vulnerabilities can be assessed

through determining the number of vulnerabilities that are going to be detected over

time. Even though public vulnerability resources such as the common vulnerability

exposures (CVE), national vulnerability database (NVD), and open source

vulnerability database (OSVDB) exist, estimating the total number of vulnerabilities

associated with a software is still difficult.

Software reliability models (SRMs) are well known and have been studied for

over 40 years [3]. These models have been widely used for assessing the risk associated

with vulnerabilities because vulnerabilities are software faults that can be exploited as

the result of security attacks. Research has been conducted to create a link between the

fault discovery process and the vulnerability discovery process for modeling purposes

[4]. Thus, vulnerability discovery models (VDMs) and Software Reliability Models

(SRMs) can be considered similar based on the fault detection processes [1].

Researchers have used data from various vulnerability databases to study trends

of discovery of new vulnerabilities and used various models for predicting when new

2

vulnerabilities may be discovered [1], [3], [5]–[8]. Several studies have proposed new

SRMs/VDMs or applied existing models to estimate security indicators such as total

number of residual vulnerabilities in the system, time to next vulnerability (TTNV),

vulnerability detection rate, etc. [1], [3]–[12].

Another approach for analyzing vulnerabilities is to find the risk associated with

each vulnerability to help companies in making decisions with respect to the severity

level of vulnerabilities and determining priorities for patching vulnerabilities. It is

critical to rank the severity and exploitability of vulnerabilities since companies use

such information to allocate their resources.

Overall, estimating the discovery times for new vulnerabilities is useful both

for vendors and for the end-users as it can help with their resource allocation strategies

over time.

1.2 Research Questions and Approaches

RQ1: Are there any features in the vulnerability data that could be used for

identifying the most appropriate models for that dataset? There are few studies that

have tried to provide guidance about which model should be used in a given situation.

We address this problem by applying common VDMs on the vulnerabilities associated

with eight software and compared their prediction accuracy.

RQ2: What models are more accurate for vulnerability discovery process

modeling? The lack of prediction accuracy is another issue regarding reliable

vulnerability risk assessment. Two strategies can be considered: (1) Finding a new

approach for analyzing vulnerability data still using common VDMs (2) Introducing a

3

new approach with better prediction capabilities. In this research, we examine both

strategies:

- We examine the effect of a data manipulation techniques (i.e. clustering,

grouping) on vulnerability data, and investigate whether this approach leads

to more accurate predictions compared to those without using clustering.

- We introduce a new approach using a neural network model with more

accurate predictions than those from common VDMs.

RQ3: Can the total number of publicly-known exploited vulnerabilities be

predicted using all vulnerabilities reported for a given software? Exploited

vulnerabilities are vulnerabilities, which were exploited as the result of a security

attack. They typically form a small portion of all the vulnerabilities reported for a given

software (generally from 2-7% per software version). A huge proportion of the

vulnerabilities may never exploited over the lifetime of a software. With such a small

number of known exploited vulnerabilities compared to the total number of

vulnerabilities, it is difficult to mathematically model and predict when a vulnerability

with a known exploit will be reported. We study this issue by introducing an approach

for predicting the total number of publicly-known exploited vulnerabilities using all

publicly-known vulnerabilities reported for a given software.

1.3 Contributions

In this thesis, we present some guidelines to model the vulnerability discovery

process of a given vulnerability dataset. We compare the model fitting and prediction

capabilities of eight models: one right-skewed distribution model, one flexible-skewed

distribution model, three symmetric distribution models, one Power-law model, one

4

exponential model, and one quadratic model. We use two different data processing

approaches. In the first approach, all the vulnerabilities are considered together, while

in the second approach they are initially clustered and then modeled. We calculate the

accuracy for each model’s fitting and prediction capabilities and analyze the average

bias of the models (i.e., whether the models were overestimating or underestimating

the number of vulnerabilities).

 We then use the eight VDMs to compare their prediction capabilities with the

ones of a neural network model.

We also study the link between publicly-known disclosure times of exploited

vulnerabilities and all publicly-known vulnerabilities reported. Using this link, we

mathematically model and predict when a vulnerability with a known exploit will be

reported.

We apply the models on eight datasets: four datasets of well-known operating

systems (i.e., Windows, Mac, IOS and Linux) and four datasets of well-known web

browsers (i.e., Internet Explorer, Safari, Firefox and Chrome).

Our results showed that, given all the uncertainties associated with our datasets:

 Considering only VDMs, in terms of prediction accuracy, our proposed

clustering approach led to more accurate results in 58% of the cases,

while the commonly used approach (without clustering) resulted in

more accurate results in 42% cases.

 Our presented a new modeling approach using neural networks

provides higher curve fitting and prediction capabilities than current

VDMs.

5

 Our proposed approach, which predicts the total number of publicly-

known exploited vulnerabilities using all publicly-known

vulnerabilities reported for a given software has higher prediction

capabilities than current VDMs.

1.4 Dissertation Outline

The rest of the dissertation is organized as follows: Chapter 2 describes the

related work. Chapter 3 describes the datasets and models that we used in our research.

Chapter 4 applies the models without using clustering and compares them in terms of

curve-fitting and prediction capabilities. Chapter 5 describes the clustering technique

and a descriptive analysis of the vulnerability datasets after being clustered. It also

presents the results of using the clustered datasets with the models for fitting and

prediction respectively and provides a comparison between the capabilities with

clustered and non-clustered data. Chapter 6 discusses the effect of another data

manipulation technique (vulnerability grouping) on prediction capabilities of the

VDMs. Chapter 7 presents a new modeling approach using neural networks and

evaluates its prediction capability versus VDMs. Chapter 8 presents a new approach

for modeling and predicting the total number of publicly-known exploited

vulnerabilities using all publicly-known vulnerabilities reported. Chapter 9 discusses

future work, summarizes the work completed, and concludes.

6

Chapter 2: Literature Review

2.1 Vulnerability Databases

Several publicly available vulnerability databases and security advisories exist

such as the National Vulnerabilities Database (NVD), Common Vulnerabilities,

Exposures (CVE), etc. They provide vulnerability features including Common

Vulnerabilities and Enumeration (CVE) identifiers, severity, Common Vulnerability

Scoring System (CVSS) scores, published date, patch date, discovery date, and

vulnerability type. However, there is no ideal source for vulnerabilities since they

usually overlap and complement each other. Then, as a solution, it is better to use a

combination of datasets [5].

2.1.1 NVD database

The National Vulnerability Database (NVD) is a public database and is

commonly used for research on vulnerability discovery modeling. The NVD, by

providing official information about all pre-detected computer vulnerabilities, helps to

successfully inform and warn the public about existing vulnerabilities. Since its

introduction in 1997, information associated with more than 43,000 software

vulnerabilities affecting more than 17,000 software applications has been published by

NVD. This valuable information is a great help in understanding trends and detecting

patterns in software vulnerabilities, so that security decision makers could better

monitor the security of computer systems that are pestered by the ubiquitous software

security flaws [13].

7

 However, the NVD comes with some shortcomings such as chronological

inconsistency (there is not a unique published date for a given vulnerability among the

public repositories), incomplete inclusion (it does not include every detected

vulnerability), lack of documentation and repetitive records of a single discovery event.

These issues may have been derived from the fact that the NVD was not configured

with vulnerability modeling needs in mind [5]. Each vulnerability entry in NVD

consists of some fields associated with that vulnerability including Common

Platform Enumeration (CPE), and Common Vulnerability Scoring System (CVSS).

Based on [13], CPE is defined as “an open framework for communicating the

characteristics and impacts of IT vulnerabilities, which provides us with information

on a piece of software, including version, edition, language”.

CVSS is a scoring system designed to provide a standardized mechanism for

evaluating the risk associated with vulnerabilities. Communicating the base, temporal

and environmental properties of a vulnerability helps organizations rate the risk

associated with that vulnerability. Some components of the CVSS vector are as follows

[13]:

- Access Complexity: the difficulty level of the attack required to exploit the

vulnerability

- Authentication: indicates whether authenticate is required in order to exploit

a vulnerability

- Confidentiality, Integrity and Availability: These features are three loss types

of attacks. Confidentiality loss indicates the condition when information is leaked to

people who are not supposed to know it. Integrity loss indicates the condition when

8

illegal modification of data is permitted. Availability loss refers to the situation when

the compromised system is not capable of performing its predefined task or is crashed.

The final CVSS Score is calculated based upon the mentioned features, with the

goal of indicating the severity associated with a vulnerability.

2.1.2 CVE database

The Common Vulnerabilities and Exposures (CVE) is another free to use source

of vulnerabilities hosted by MITRE1. CVE is designed to allow vulnerability databases

to be linked together, and to make the comparison of security tools and services more

straightforward for users. The creation of this list dates to September 1999 [5].

According to the CVE's FAQ2, “CVE is a dictionary that provides definitions for

publicly disclosed cybersecurity vulnerabilities and exposures. The goal of CVE is to

make it easier to share data across separate vulnerability capabilities (tools, databases,

and services) with these definitions”. In this list, every vulnerability is assigned an

identification code known as Common Vulnerabilities and Enumeration Identifier

(CVE ID). Thanks to these identifiers, the process of sharing data among network

security databases and tools has become straightforward since they provide a baseline

for evaluation of the security tools’ coverage [14]. This source of data includes many

features about vulnerabilities that can be leveraged in our analysis. These features are

usually derived from CVE entries. Each CVE entry in this database includes3: a CVE

ID (i.e., "CVE-1999-0067", "CVE-2014-10001"), a brief description of the security

vulnerability and at least one pertinent reference (i.e., vulnerability reports and

1 http://cve.mitre.org/
2 http://cve.mitre.org/about/faqs.html
3 https://cve.mitre.org/about/index.html

9

advisories). All these information are assigned to a vulnerability by a CVE Numbering

Authority (CNA). CNAs consist of authorized organizations from around the world

eligible to assign CVE IDs to vulnerabilities affecting products within their disclosure,

for inclusion in first-time public announcements of new vulnerabilities.

2.1.3 SecurityFocus

SecurityFocus as a computer security portal is a home to the well-known

Bugtraq mailing list. Based on SecurityFocus’s FAQ4, “BugTraq is a full disclosure

moderated mailing list for the detailed discussion and announcement of computer

security vulnerabilities: what they are, how to exploit them, and how to fix them”. Each

vulnerability entry in this database includes: a Bugtraq ID, a CVE ID, a published date,

a brief description of the security vulnerability, and at least one public reference.

2.1.4 CXSecurity/WLB2

World Laboratory of Bugtraq is another collection of information on data

communications safety. Based on CXSecurity’s FAQ5, every single user can interact

with the database and report a vulnerability. However, each safety note in verified by

CXSecurity. Each vulnerability entry in this database includes: a Bugtraq ID, a CVE

ID, a published date, a brief description of the security vulnerability, and at least one

public reference. Each entry in this database includes: a Bugtraq ID, a CVE ID, a

published date, a brief description of the security vulnerability, and at least one public

reference.

4 https://www.securityfocus.com/archive/1/description
5 https:// https://cxsecurity.com/wlb/about/

10

2.1.3 Exploit database (EDB)

EDB records exploits and vulnerable software [15]. According to the

explanations provided in EDB's official website6, “The Exploit Database is a CVE

compliant archive of public exploits and corresponding vulnerable software, developed

for use by penetration testers and vulnerability researchers.” It reports vulnerabilities

for which there is at least a proof-of-concept exploit. The process of collecting proof-

of-concept exploit data is more convenient than collecting data on actual attacks.

Based on [16], “a proof-of-concept exploit is merely a byproduct of the so-called

‘responsible vulnerability disclosure’ process, whereby a security researcher that

finds a vulnerability discloses it to the vendor alongside a proof-of-concept

exploitation code that proves the existence of the vulnerability itself”. Most of

EDB’s data are derived from Metasploit, a tool for creating and executing exploit code

against a target machine. It provides a search utility that uses a CVE number to find

vulnerabilities that have an exploit. In this repository, every vulnerability is assigned

an identification code known as EDB Identifier (EDB ID), a CVE ID, an exploit date,

and a description.

2.2 Vulnerability Risk Assessment and Modeling: Software Level

Even though vulnerability resources such as the common vulnerability

exposures (CVE), national vulnerability database (NVD), and open source

vulnerability database (OSVDB) are available, estimating the total number of

vulnerabilities in a software is still difficult. Software reliability models (SRMs) are

6 https://www.exploit-db.com/about-exploit-db

11

well known and has been studied for over 40 years [3]. Several studies have applied

SRMs to estimate software security indicators like the total number of residual

vulnerabilities, time to next vulnerability (TTNV), and vulnerability density [3], [6]–

[8], [17], [18].

The earliest effort at modeling software reliability was a Markov birth-death

model introduced by Hudson in 1967 [19]. A good overview of several SRMs that

characterize the process of software defect-finding is provided in [3]. Recently, a few

vulnerability discovery models (VDMs) have been proposed to estimate the number of

total vulnerabilities in a given software/system. Since vulnerabilities are software faults

which are exploited as a result of security attacks [1], VDMs and SRMs can be

considered to be similar based on the fault detection processes [1]. Research has been

conducted to create a link between the fault discovery process and the vulnerability

discovery process for modeling purposes [4].

The earliest study on modeling the vulnerability discovery process was

conducted in 2002, when Anderson [20] proposed the first VDM termed the Anderson

Thermodynamic (AT) model. Since 2002, a few other VDMs have been proposed.

Rescorla [6], [7] proposed a VDM to estimate the number of undiscovered

vulnerabilities. In 2005, Alhazmi et al. [21] proposed the application of SRMs to

vulnerability discover modeling. The same year, they also introduced a logistic VDM

known as Alhazmi–Malaiya Logistic (AML) model, which assumes a symmetrical

shape around the peak discovery rate value [8].

In another study [21], Alhazmi and Malaiya found that the AML model

provides better goodness-of-fit results compared to Rescorla and Anderson models.

12

Moreover, an effort-based model was also introduced that uses system installations

instead of calendar time as the independent factor. In other words, the authors argued

that discovering a vulnerability associated with a software installed on a larger group

of computers is more rewarding. However, the effort-based model requires knowing

the number of users for a target product in market share, which is not always easy to

obtain.

A Weibull distribution-based VDM was proposed by Kim in 2007 [22]. The

author argued that the assumption made by the AML model that the vulnerability

discovery rate is symmetric around the peak is not always consistent. He leveraged a

Weibull distribution to model the asymmetric trend of the discovery rate as an

alternative to the AML model. However, the Weibull model did not always provide a

good fit. Li et al. [23] empirically showed that, in comparison to other reliability

models, a Weibull model is better for estimating defect occurrence across a wide range

of software systems.

Several studies applied existing models to different types of software packages,

such as operating systems and web servers, to simulate the vulnerability discovery rate

and predict the number of vulnerabilities that may potentially be present but not yet

found [17], [18], [24]. Other studies tried to increase the accuracy of the vulnerability

discovery modeling by examining the skewness of the vulnerability data [25].

Research on reliability and risk assessment with a continual vulnerability

discovery process has recently started. Studies provided by Anderson [20], Rescorla

[6], [7], Alhazmi and Malaiya [8], [18], [21], Kim [26], Ozment and Schechter [27],

13

Ozment [5], Chan et al. [28], Joh and Malaiya [25] proposed a number of VDMs

capable of making different projections on vulnerabilities’ disclosure trends.

2.3 Vulnerability Risk Assessment and Modeling: Vulnerability Level

Another approach for analyzing vulnerabilities is to find the risk associated with

each vulnerability. Such an approach helps companies to make decisions with respect

to the severity level of vulnerabilities. Ranking vulnerabilities is a hard task since it is

often difficult to predict how attackers could exploit a vulnerability and use the exploit.

Therefore, the risk that different vulnerabilities face is often unknown until they are

exploited. In addition, comparing the severity of vulnerabilities is difficult when

leveraging their descriptions. It is possible that a simple programing bug can lead to

more harm than a major system flaw. Several studies analyze and model vulnerabilities

based on their technical features such as exploitability and come up with better

estimations. We can divide them into studies that focused on examining sources code

of software, vulnerability life-cycle, CVSS metrics, and system calls.

2.3.1 Based on source code

In addition to vulnerabilities’ publication dates, some studies used software

source code for vulnerability assessment in the context of VDMs. Kim et al. [22]

proposed a VDM based on shared source code measurements among multi-version

software systems using the source code and vulnerability data of two major versions of

Apache HTTP Web server and two major versions of Mysql DBMS. In 2006, Ozment

and Schechter applied a reliability growth model to evaluate the security of the

OpenBSD OS by examining its source code and the rate at which new code has been

14

introduced [27]. However, it has been shown that source code cannot be an adequately

efficient measure in terms of prediction [5].

Younis [2] assessed vulnerability exploitability for individual vulnerabilities

based on source code properties regardless of the availability or unavailability of a

patch. In addition to the vulnerabilities publication dates, he took advantage of software

source code for vulnerability analysis in the context of VDMs.

Nagappan and Ball [15] performed a pre-release defect prediction using relative

code churn metrics on Windows Server 2003. Their multiple linear regression model

using principal components analysis provided a high correlation between the estimated

failures and the actual failures in software modules (r=0.889 for the Pearson correlation

and r=0.929 for the Spearman rank correlation). The relationships between code

complexity and vulnerabilities of the Mozilla JavaScript engine at the function level

was studied by Shin and Williams [29]. The correlations between code complexity and

vulnerabilities were weak (Spearman r=0.3 at best) but statistically significant [29].

Shin et al. [30] through an empirical study showed that by using complexity and code

churn metrics, VDMs are capable of predicting vulnerable code locations with high

number of calls during a security breach. However, it may generate many false

positives. In 2013, Shin [31] showed that the performance of fault and vulnerability

prediction is largely affected by the number of the reported faults and vulnerabilities in

previous releases.

Recently, Nguyen et al. proposed an automated method that determines the code

evidence for the presence of vulnerabilities in previous software versions to evaluate

whether the target version is vulnerable or not [32].

15

2.3.2 Based on vulnerability lifecycle

Disclosure time, exploitation time, and patching time create the lifecycle of a

vulnerability. In 2006, a vulnerability lifecycle model was presented by Arbaugh et al.

[10] to measure the number of intrusions during the vulnerability lifecycle. Frei et al.

[11], [12], linked the patching process to the lifecycle of a vulnerability. They extended

Arbaugh et al.’s model using more than 80,000 vulnerabilities; they identified and

measured three types of risk exposures as black, gray, and white. They also showed

that exploits are often faster to occur than patches. This work has been extended by

Shahzad et al. [33], who conducted a descriptive statistical analysis of a large software

vulnerability dataset employing clustering on NVD and OSVDB datasets that included

vendors and software.

A risk measure was defined by Joh and Malaiya [34] as a probability of adverse

events and their impacts. Using Markovian stochastic models, they utilized the

vulnerability lifecycle to measure the likelihood of vulnerability exploitability for an

individual vulnerability and for the whole system. However, the transition rate between

vulnerability lifecycle events has not been determined and the probability distribution

of lifecycle events remains to be studied.

Zero-Day vulnerability and its lifespan have been defined by McQueen et al.

[35]. Based upon their definition, the zero-day lifespan refers to the time between the

vulnerability discovery date and the public disclosure date. They were able to identify

the actual vulnerability discovery dates for 15 vulnerabilities. They also compared the

CVSS base score to mean lifespan. Younis [2] considered time to vulnerability

disclosure (TTVD) or lifespan starting from the vulnerability birth date and correlated

16

the TTVD with the CVSS base score. Bozorgi et al. [36] refused to do prediction of

zero-day vulnerabilities since he believed that their reports occur with the vulnerability

already exploited.

2.3.3. Based on CVSS metrics

Common Vulnerability Scoring System (CVSS) metrics are used to measure

the severity of vulnerabilities [2]. Exploitability (the ease of exploiting a vulnerability)

and impact (the effect of the exploitation) are indicators of the severity. Joh and

Malaiya in [34] leveraged the impact related metrics from CVSS to determine the

exploitability impact. They applied their metric to assess the risk of two systems that

had known unpatched vulnerabilities using actual data.

Descriptive approaches and trends in scheduling of vulnerability patching and

exploitation exist. However, most of them use exploit data from OSVDB that does not

provide sufficient information about the actual exploitation of a vulnerability and

usually the dates reported for exploits by this source are not accurate enough [37]. NVD

timing data has also been reported to generate an unforeseeable amount of noise

because of how the vulnerability disclosure process works [16], [37].

2.3.4. Based on system calls

System calls are entry points to privileged kernel operations [2]. A system call

from a user function can violate the least privilege principle. The principle of least

privilege indicates a security protocol, where each part of a system has only the

privileges that are needed for its function. In this condition, even if attackers gain access

to one part, they would have only limited access to the whole system [38]. An analysis

17

of UNIX system calls was presented by Bernaschi et al. [39]. They classified system

calls according to their level of threat with respect to system penetration. To control

system calls, they proposed the Reference Monitor for UNIX System (REMUS), a

mechanism to detect an intrusion that may use these system calls. Younis [2] applied

their idea utilizing system related attributes such as attack surface entry points, call

function analysis, and the existence of dangerous system calls to measure the

exploitability of a known vulnerability.

2.4 Methods of Analysis & Risk Assessment Strategies

Several other strategies exist to provide a better understanding of software risk.

One is splitting vulnerabilities based on their specifications and studying their behavior

in specific subsets like zero-day vulnerabilities. In addition, some studies focused on

finding an optimized plan for patch releases with respect to the vulnerability discovery

process to diminish the side effects of malicious attacks.

2.4.1 Cluster-based analysis

Clustering is a form of classification method that is very useful in understanding

the complex nature of multivariable relationships. In others words, clustering is a

method of searching data to detect similarities and dissimilarities in order to find a

structure of natural groupings [40].

Clustering can be done for different purposes including splitting real-world

exploited vulnerabilities from those which were exploited during software testing [41],

and detecting exploited vulnerabilities versus non-exploited ones when there is not

enough information about some vulnerabilities [42]. While clustering is categorized as

18

an explanatory method to simplify the interpretation of data, in most practical

applications, to distinguish “good” groupings from “bad” groupings, the researcher

should know enough about the context.

Generally, clustering algorithms are divided into hierarchical methods

(connectivity-based clustering, used when the number of items is less than 100), non-

hierarchical methods (centroid-based clustering, used for more the 100 items),

distribution-based clustering (used when Clusters can be defined as items belonging

most likely to the same distribution), and density-based clustering (used when clusters

are defined as areas of higher density than the remainder of the data set) [40].

Most efforts require a measure of “closeness”, or “similarity” to provide a group

structure from a complex data set. When data are clustered, the similarity should be

indicated by a measure of distance. The most common distance measures are the

Euclidian distance, the geometric distance in multidimensional space, and the

Mahalanobis distance which is based on the covariance matrix of the variables [40].

Lee et al [43] investigated a distributed denial of service (DDoS) attack

detection method using cluster analysis. Looking into the steps needed to develop a

DDoS attack and extracting several traffic variables which best illustrate each phase of

the DDoS attack, the authors performed cluster analysis to find precursors for proactive

detection of the attack. Shahzad et al [33] conducted a descriptive statistical analysis of

a large software vulnerability dataset employing clustering on type-based vulnerability

data. Huang et al [44] classified NVD vulnerabilities employing several clustering

algorithms to create a relatively objective classification criterion among the

vulnerabilities.

19

2.4.2. Machine learning

Machine learning focuses on automatic recognition of complex patterns and

making intelligent predictions or decisions based on data. The technique for learning a

classifier (or a function) from training examples when each example is associated with

a true label is called the supervised learning method, and it is composed of two main

phases [45]. The first phase is the learning or training phase. In this phase, a machine

learning algorithm is run on a fraction of training data that consists of pairs of input

data (a vector of integers) and their associated output to learn a classifier. Testing is the

second step where the pre-learned classifier is tested on the rest of the data to estimate

the testing precision of the classifier.

Bozorgi et al. [36] measured vulnerability severity based on analyzing

vulnerability exploitability. They discussed the weakness of exploitability measures

like CVSS base score metric in providing sufficient information about the vulnerability

severity. CVSS metrics are the de facto standard that is used to measure the severity of

vulnerabilities [46]. However, CVSS exploitability measures have come under some

criticism. They [36] believed that CVSS metrics are only built upon expert knowledge

and static formula.

To remedy the situation, the authors proposed a machine learning model using

supporting vector machines (SVMs) and a data mining technique that can predict the

possibility of a vulnerability getting exploited. In their study, using the CVSS

exploitability metric identified many vulnerabilities with a high severity score even

though there were no known exploits for those vulnerabilities. This indicates that the

20

CVSS score does not differentiate between exploited and non-exploited vulnerabilities.

This result was also confirmed by [16], [47].

Younis et al. [42] leveraged software properties such as the attack surface entry

points, the source code structure, and the vulnerabilities location to determine the

vulnerabilities’ exploitability. Younis’s approach is particularly important for newly

released applications that do not have a large amount of historical vulnerabilities.

Logistic Regression (LR), Naive Bayes (NB), Random Forests (RF), and Support

Vector Machine (SVM) are the machine learning techniques employed in the study.

The SVM, when the principal component analysis (PCA) was used, has performed best

compared to the other classifiers.

Sabottke et al. [41] explored early detection of exploits using information

available on Twitter. They proposed the design of a Twitter-based exploit detector,

using supervised machine learning techniques. They leveraged the exploit-related

discourse tweets on Twitter (the tweets that included ‘CVE’) and extracted information

posted on public vulnerability resources to evaluate the chances for early detection of

the vulnerabilities at risk of being exploited in the presence of benign and adversarial

noise. In other words, they investigated techniques for minimizing false-positive

detections—vulnerabilities that are not actually exploited—which is critical for

prioritizing response actions.

2.4.3. Optimal patch planning

A security patch is a small program that fixes vulnerabilities. Patches usually

get distributed to end-users to remove those vulnerabilities. Ideally, the best time to

release a patch is the time when a vulnerability appears. However, the development and

21

distribution of patches involves considerable expenses for vendors. Additionally, a

poorly designed patch may lead to introducing new issues. Thus, many of the vendors

tend to release patches for their products in a pre-designed timeline [1].

Zheng et al. [48] presented a method for quantifying a security attribute called

mean time to security failure (MTTSF) of a virtual machine-based (VM-based)

intrusion tolerant system [49] based on queueing theory. They also presented a

generalized scheme for tolerating intrusions in a VM-based intrusion tolerant system.

In 2016, Luo et al. [50] discussed the patch release strategy from the perspective of

vendors by cost criteria. The model assumed a non-homogeneous Poisson process

(NHPP) as the number of vulnerabilities discovered, and formulated the expected total

cost by considering the damage of exploiting vulnerabilities before and after a patch

release. Some researchers have focused on proposing methods according to the cost of

security breaches [51]; finding a cost function for vulnerabilities has remained a

controversial topic.

2.5. Guidelines for Vulnerability Discovery Models

Security decision makers often use public data sources to help make better

decisions regarding, for example, what security products to choose, check for security

trends, and estimate when new vulnerabilities that affect their installations will be

publicly reported. Several studies have applied software reliability models (SRMs) and

vulnerability discovery models (VDMs) to estimate times between public reports of

vulnerabilities [1], [3], [5]–[8].

Few studies have tried to provide a guideline about which model should be used

in a given situation. Joh et al. [25] investigated the relationship between the

22

performance of five S-shaped VDMs (i.e., AML, Weibull, Gamma, Normal, and Beta)

and the skewness in vulnerability datasets for eight software. Their results showed that

Gamma-based VDM, which is a right-skewed VDM, always yields better results with

positively skewed (right-skewed) datasets than other models in terms of goodness of

fit results and prediction capabilities. For the other VDMs used, no significant

correlation was observed. In addition, the authors showed that the AML model

performs better than some right-skewed VDMs in terms of prediction when the

vulnerability discovery datasets are asymmetrical.

Massacci et al. [24] proposed an empirical methodology that evaluates the

performance of VDMs in terms of goodness of fit and predictability. They evaluated

most existing VDMs (AT, Rescorla’s models, AML, Weibull, Linear) on 30 major

releases of four web browsers (i.e., IE, Firefox, Chrome, Safari). They also classified

the age of a browser’s version in three different periods: youth (within 6-12 months

since release date), middle age (12-36 months since release date), and old age (beyond

30 months). Based upon their findings, for a young software, the linear model yielded

the best results for estimating the vulnerabilities in the next 3-6 months. For middle-

aged browsers the AML model was selected as the best model.

Regarding modeling exploited vulnerabilities, one aspect consists of the

probabilistic examination of intrusions by [52], [53]. The lack of data is a significant

barrier to modeling exploited vulnerabilities using current VDMs or the machine

learning techniques, which require considerable amount of data for satisfactory

training.

23

Chapter 3: Datasets and Models

3.1 Introduction

In this chapter, we will introduce the datasets used in this thesis. Then, we will

present two groups of VDMs used for our analysis based upon the classification

provided in [24]: S-shaped vulnerability discovery models (VDMs), and non S-shaped

VDMs.

3.2 Vulnerability Dataset Creation

The data used in this research has been collected from six different vulnerability

data sources including the National Vulnerability Database (NVD)7 maintained by

NIST, the Common Vulnerabilities and Exposures (CVE) database8, the CVE Details

data source9, the Security database10, the SecurityFocus data source11, and the

CXSecurity database12. All the datasets we used here, derived from those three

databases, we previously introduced in Chapter 2.

We used the data generated by a security tool called “VepRisk”13, which has a

backend modules that mine, extract, and store data from public repositories of

vulnerabilities. We then stored the data in our own database using MySQL, and

identified each vulnerability by its Common Vulnerability Enumeration (CVE)

identifier. We used the CVE identifier to compare the reporting date of each

7 https://nvd.nist.gov
8 https://cve.mitre.org
9 https://cvedetails.com/
10 https://www.security-database.com/
11 http://www.securityfocus.com/
12 https://cxsecurity.com/
13 http://veprisk.city.ac.uk/main

24

vulnerability in NVD, with the dates in other public repositories on vulnerabilities. We

then updated the reporting date on our database to the earliest date that a given

vulnerability was known in any of these databases.

We used the NVD as the backbone of comparisons because it includes all the

vulnerabilities that can be found in some of the other data sources. Even though some

information might be missing in the NVD, it includes the fields that allows to search

for the missing information in the other data sources. One example is the Common

Platform Enumeration (CPE) identifier, which is only present in the NVD but can be

used in combination with the CVE identifier to extract information from different

sources. Another example is the vulnerability type that is only present in the CVE

Details table.

Vulnerability databases might have high uncertainty regarding some variables

associated with the reported vulnerabilities such as published dates. Even though we

tried to overcome this issue by collecting vulnerability data from several sources and

filtering the published dates based upon the earliest date a vulnerability reported, we

should be aware of the uncertain nature of the reported published dates. Regarding that,

all the conclusions we draw from this research and their validity are limited by our

database uncertainties.

3.3 Vulnerability Dataset Overview

It is important to have a high number of vulnerabilities for each of our analyses.

Thus, we decided to focus on two groups: operating systems (OSs) and web browsers.

More specifically, we selected four OSs (Windows, Mac, IOS, and Linux) and four

25

web browsers (Internet Explorer, Safari, Firefox, and Chrome). The results presented

in this thesis include the vulnerabilities until the end of 2018.

3.3.1 Operating systems

We focused on vulnerabilities reported for four well-known OSs: Windows

(1995-2018), Mac (1997-2018), IOS (the OS associated with Cisco) (1992-2018), and

Linux (1994-2018). We chose these OSs as they are most widely used, and had the

highest number of vulnerabilities. The start dates indicate the first vulnerability

occurrence for the specific OS. For each OS, we included all the vulnerabilities reported

for any of its versions. For instance, all the vulnerabilities reported for mac_os,

mac_os_server, mac_os_x, and mac_os_x_server were put together to create a

vulnerability database for Mac. We did this to have a high number of vulnerabilities

for each OS. The total number of distinct vulnerabilities (unique CVE-IDs) for these

OSs is 12,852. Table I presents the number of vulnerabilities for the four OSs.

3.3.2 Web browsers

We focused on the vulnerabilities reported for four well-known web browsers:

Internet Explorer (1997-2018), Safari (2003-2018), Firefox (2003-2018), and Chrome

(2008-2018). These browsers were selected since they are widely used and had the

highest number of vulnerabilities. The start dates indicate the first vulnerability

occurrence for the specific web browser. Similar to what we did for OSs, we

considered, for each browser, all the vulnerabilities reported for any of its versions. As

an example, all the vulnerabilities reported for ie, ieexplorer, and ie_for_macintosh

were combined under Internet Explorer. This allowed us to have a high number of

26

vulnerabilities for each browser. The total number of vulnerabilities for these browsers

is 6,546. Table 1 presents the number of vulnerabilities for the four browsers.

Table 1: NUMBER OF VULNERABILITIES PER SOFTWARE

OS Windows Mac IOS Linux

Vulnerabilities 3434 2908 698 5812

Web Browsers IE Safari Firefox Chrome

Vulnerabilities 1862 994 1784 1906

3.4 Datasets Characterization

In this section, we characterize the datasets using well-known statistical

indicators. Distributions are characterized by their first four moments and indicators

like skewness and kurtosis highlight distribution properties. In this section, we will

characterize the datasets based on their skewness since this indicator is widely used by

the vulnerability modeling community [22], [25]. The skewness of a

dataset/distribution specifies its degree of asymmetry around its expected value [25].

The skewness values are calculated via following equation [40]:

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑛

(𝑛 − 1)(𝑛 − 2)
∑ (

𝑥𝑖 − �̅�

𝑠
)

3

 (1)

where n is the number of data points, 𝑥𝑖 is the 𝑖𝑡ℎ data value, �̅� represents the mean

value and s is the standard deviation. For a given distribution with an absolute skewness

value of greater than 1, between 0.5 and 1, and less than 0.5, the distribution is highly

skewed, moderately skewed, and approximately symmetric, respectively [40]. The

datasets with an absolute value greater than 0.5 and positive skewness values are called

right-skewed datasets and referred to those datasets where more vulnerabilities are

27

reported later in the product lifecycle, and vice versa. Figure 1 shows an overall shape

of the vulnerability discovery process with different skewness values.

 Overall view of a distribution with (a) negative skewness, (b) appoximately zero skewness, and (c)

positive skewness14

Table 2 presents the skewness value of each software used in this research. All

the datasets are right-skewed (each has a positive skewness value with an absolute

value of skewness greater than 0.5). In other words, for a software with a right-skewed

dataset, plots of the number of discovered vulnerabilities associated with the software

grouped by time blocks lead to a significant number of vulnerabilities on the left side

of the plot.

Table 2: SKEWNESS VALUES PER SOFTWARE

OS Windows Mac IOS Linux

Skewness 2.381 2.459 3.687 3.589

Web Browsers IE Safari Firefox Chrome

Skewness 2.705 3.381 11.00 1.973

3.5 S-shaped Vulnerability Discovery Models

S-shaped VDMs, which measure the total number of detected vulnerabilities,

divide the process of vulnerability discovery into three phases as shown in Figure 2.

14 H. Joh and Y. K. Malaiya, “Modeling Skewness in Vulnerability Discovery: Modeling Skewness in Vulnerability Discovery,”

Qual. Reliab. Eng. Int., vol. 30, no. 8, pp. 1445–1459, Dec. 2014.

28

Phase 1 represents the learning phase, which starts from the introduction of the software

and continues until the beginning of the linear phase as a consequence of increasing

popularity of the software [25]. During the learning phase, the vulnerability discovery

intensity function is an increasing function. Phase 2 or the linear phase is the period

when most of the vulnerabilities are detected. The intensity function associated with

the vulnerability discovery process of this phase is constant. Phase 3 or the saturation

phase is the period when most of the vulnerabilities have been discovered and only a

few vulnerabilities remain undiscovered [24]. The vulnerability discovery intensity

function for the saturation phase is decreasing. Note that the saturation phase might not

be observable for all software. This phase will not appear as long as a significant

number of vulnerabilities are still undetected. The S-shaped VDMs used in this research

are not distributions. They are built based upon well-known distributions and their

purpose is to count the total number of vulnerabilities [24]. Regarding this, for all the

models we used in this study, we only applied their cumulative forms Ω(𝑡) on

vulnerability data. For each software, the variable we are predicting is the cumulative

number of vulnerabilities reported in 30 days’ time intervals. In other words, t is

associated with 30 day intervals and Ω represents the cumulative number of

vulnerabilities reported within each interval.

We use the model skewness to select the S-shaped VDMs in this research. We

selected five S-shaped VDMs: one right-skewed model (Gamma-based VDM), one

flexible-skewed model (Weibull-based VDM), and two symmetrical models

(Alhazmi–Malaiya Logistic (AML) model and Normal distribution-based model).

These VDMs were selected because they are the most well-known right-skewed,

29

flexible-skewed, and symmetrical distribution-based VDMs in modeling the

vulnerability discovery process. We detail in the following sections these five models.

 Three phases for S-shaped models

3.5.1. Gamma-based VDM

The Gamma-based VDM, derived from the Gamma distribution, belongs to the

family of right-skewed distributions. It has a continuous intensity function with three

parameters: α (shape parameter), β (scale parameter), and 𝛾, which represents the total

number of vulnerabilities that would finally be discovered. The vulnerability discovery

rate/intensity function, ω, for the Gamma-based VDM as well as its cumulative model

(Ω) presented in (2) and (3), respectively.

ω(𝑡) =
𝛾

Γ(𝛼)𝛽𝛼
𝑡𝛼−1𝑒

−
𝑡
𝛽 (2)

𝑤ℎ𝑒𝑟𝑒 Γ(𝛼) = ∫ 𝑡𝛼−1𝑒−𝑡

∞

0

𝑑𝑡

Ω(𝑡0) = ∫
𝛾

Γ(𝛼)𝛽𝛼
𝑡𝛼−1𝑒

−
𝑡
𝛽

𝑡0

𝑡=0

𝑑𝑡 (3)

Phase 2:

Linear

phase

C
u

m
u

la
ti

v
e

#
 o

f
v

u
ln

er
a

b
il

it
ie

s
Phase 1:

Learning

phase

Phase 3:

Saturation

phase

30

This distribution is only defined for t >0. The shape and the scale parameters

are always positive. It is expected that for the software with large values of t, right-

skewed distributions provide better fits to vulnerability discovery data than other

models [25] because of gradual reduction in the number of discovered vulnerabilities,

which yields a tail on the right side of the relevant vulnerability discovery intensity

function.

3.5.2 Weibull-based VDM

The Weibull-based VDM, derived from the Weibull distribution, belongs to the

family of flexible-skewed distributions. This VDM was first introduced in 2007 [22].

The vulnerability discovery rate/intensity function, ω, for the Weibull-based VDM as

well as its cumulative model (Ω) presented in (4) and (5), respectively.

ω(𝑡) =
𝛼𝛾

β
(

𝑡

𝛽
)

𝛼−1

𝑒
−(

𝑡
𝛽

)
𝛼

 (4)

Ω(𝑡) = 𝛾 {1 − 𝑒
−(

𝑡
𝛽

)
𝛼

} (5)

Like the Gamma-based VDM, the Weibull-based VDM has a continuous

intensity function with three parameters: α (shape parameter), β (scale parameter), and

𝛾 which represents the total number of vulnerabilities that would finally be discovered.

This VDM can be symmetrical with zero skewness for α values around 3. For α <3,

this VDM is always right-skewed, while for α >3, it is left-skewed. Like the Gamma-

based VDM, this distribution is defined for t >0.

31

3.5.3 AML VDM

Alhazmi–Malaiya Logistic (AML) model belongs to the family of distributions

with symmetrical intensity (rate) functions. This model was first introduced in 2005 [8]

and is based upon the idea that as an operating system gains market share, the attention

it receives increases. Then, after experiencing a peak, it starts decreasing when a newer

version is released. Overall, the AML model assumes the cumulative number of

vulnerabilities is influenced by two factors: the share of the installed base (increasing

factor) and the number of remaining undiscovered vulnerabilities (declining factor).

The AML model has three parameters including a constant C. Parameters A and B are

empirical constants and directly estimated from the dataset. B stands for the total

number of vulnerabilities that would finally be discovered. This model is defined for

time values t from the negative infinity to the positive infinity, and the parameters must

be positive. The vulnerability discovery rate/ intensity function (ω) for the AML VDM

as well as its cumulative model (Ω) presented in (6) and (7), respectively.

ω(𝑡) = 𝐴Ω(B − Ω) (6)

Ω(𝑡) =
𝐵

𝐵𝐶𝑒−𝐴𝐵𝑡 + 1
 (7)

3.5.4 Normal-based VDM

The Normal-based VDM belongs to the family of distributions with

symmetrical intensity/probability density functions. This model presents a distribution

with zero skewness that has three parameters: μ is a location parameter, σ is a scale

parameter and 𝛾 is the total number of vulnerabilities that would eventually be

32

discovered. The vulnerability discovery rate/intensity function (ω) for the Normal-

based VDM as well as its cumulative model (Ω) presented in (8) and (9), respectively.

ω(𝑡) =
𝛾𝑒−

(𝑡−𝜇)
𝑠

s (1 + 𝑒−
(𝑡−𝜇)

𝑠)
2 (8)

 Ω(𝑡) =
𝛾

1 + 𝑒−
(𝑡−𝜇)

𝑠

 (9)

The Normal-based VDM has lighter tails on both sides in comparison to the

logistic distribution used for the AML model. For a dataset with fewer vulnerabilities

discovered at the beginning and at the end of a discovery process, the Normal VDM

might be a better fit than the AML model [25].

3.5.5 Younis Folded VDM

 The normal distribution is symmetric around its mean and is defined for a

random variable that takes values from -inf to +inf. In some cases, a distribution is

needed that has no negative values. Folded distributions are kinds of asymmetrical

models obtained by folding the negative values into the positive side of the distribution.

The folded distribution has been found usable in industrial practices such as

measurement of flatness and straightens.

In the Younis folded VDM [54] vulnerability discovery starts at time t = 0

which corresponds to the release time of the software. In this model, t represents the

calendar time, 𝜏 is a location parameter, σ is a scale parameter, and 𝛾 represents the

number of vulnerabilities that will be eventually discovered. The second term in its

cumulative Ω(𝑡) equation (13) represents the part of the distribution folded to the

33

positive side, which shows the discovery process for the Folded VDM. In the equation

erf(.) is the error function. This distribution is defined for 𝑡 ≥ 0.

ω(𝑡) =
𝛾

√2𝜋𝜎
{exp − (

(𝑡 − 𝜏)2

2𝜎2
) + exp − (

(𝑡 + 𝜏)2

2𝜎2
)} (12)

Ω(𝑡) =
𝛾

2
{erf (

𝑡 − 𝜏

√2𝜎
) + erf (

𝑡 + 𝜏

√2𝜎
)} (13)

Compared to AML, the Folded VDM has shorter learning phase or missing

learning phase which makes the normal distribution asymmetric. It results in a higher

discovery rate at the beginning which may be especially applicable to the cases where

the vulnerability discovery plot is in linear phase even at the beginning.

3.6 Non-S-shaped Vulnerability Discovery Models

In addition to the S-shaped models described in Section 3.5, we also considered

several VDMs that are not S-shaped and cannot be characterized solely by their

skewness (note: we used the classification presented in [24]). These models are Power-

law, Rescorla Quadratic (RQ), and Rescorla Exponential (RE).

3.6.1 Power-law Software Reliability Growth Models (SRGM-based)

Research has been conducted to find a link between the fault discovery process

of a software and the discovery process of its vulnerabilities for modeling purposes [4].

When considering the fault detection process of a software, it is justifiable to conclude

that software reliability growth models (SRGMs) and vulnerability discovery models

(VDMs) are similar [1]. In such cases, the intensity/rate function can represent the

detection rate of vulnerabilities.

34

When modeling the cumulative number of failures Ω(𝑡) for software reliability

evaluations, models derived from a nonhomogeneous Poisson process (NHPP) are

often used. Allodi [55] showed that the vulnerability exploitation may follow a Power-

law distribution. However, such models have several assumptions. The main one is that

the number of detected vulnerabilities follows a nonhomogeneous Poisson process. In

addition, if we consider a software as a repairable system, its intensity function ω(t) =

dE[Ω(t)]/dt, is often, for simplicity, assumed a monotonic function of t. Therefore, in

NHPP-based software reliability growth models (SRGMs) or NHPP-based VDMs, the

intensity function (the detection rate of software errors/the detection rate of

vulnerabilities) is considered to be a monotonic function [56]. The equations associated

with the Power-law model are presented in (10) and (11), respectively. This model is

continuous over time and has two parameters: α (shape parameter), β (scale parameter).

ω(𝑡) =
𝛼

β
(

𝑡

𝛽
)

𝛼−1

 (10)

Ω(𝑡) = (𝛽−𝛼). 𝑡𝛼 (11)

3.6.2 Rescorla Exponential (RE)

Rescorla’s models are simple exponential and quadratic models that are

commonly used and first were introduced by Rescorla in vulnerability analysis area [7].

In equation (14) 𝛾 represents the number of vulnerabilities that will be eventually

discovered, and 𝜆 represents the detection rate of software errors/the detection rate of

vulnerabilities.

Ω(𝑡) = 𝛾(1 − 𝑒−𝜆𝑡) (14)

35

3.6.3 Rescorla Quadratic (RQ)

Equation (15) is a simple quadratic model introduced by Rescorla [7].

Parameters A and B are empirical constants and directly estimated from the dataset.

Ω(𝑡) =
𝐴𝑡2

2
+ 𝐵𝑡 (15)

3.7 Summary

In this chapter, we introduced the datasets used in this thesis. We presented the

models used for our analysis in two categories of S-shaped VDMs, and non S-shaped

VDMs. In the next chapter, we will apply these models on the vulnerability datasets

and compare their curve-fitting and prediction capabilities.

36

Chapter 4: Non Cluster-based Vulnerability Assessment

4.1 Introduction

In this chapter, we will apply the VDMs introduced in Chapter 3 on the

vulnerability datasets associated with the operating systems and web browsers also

introduced in Chapter 3. Then, we will compare the curve-fitting and prediction

capability of these models and will investigate which models perform better in a given

situation. Finally, we will present some guidelines to model vulnerability discovery

data based upon common VDMs.

4.2 Motivation

Among the research conducted on vulnerability modeling, few studies have

tried to provide a guideline about which model should be used in a given situation. In

other words, assuming the vulnerability data is provided, the research question

addresses the following. Is there any features in the vulnerability data that could be

used for identifying the most appropriate models for that dataset? What models are

more accurate for vulnerability discovery process modeling?

In this chapter, we make the following contributions:

-We compare the curve fitting and prediction capabilities of eight VDMs (i.e.

one right-skewed distribution-based model, one flexible-skewed distribution-based

model, three symmetric distribution-based models, one Power-law model, one

exponential model, and one quadratic model) on two types of software (i.e. OSs and

Web Browsers).

37

- We present some guidelines to model vulnerability discovery data based upon

common VDMs.

- Based upon our findings from estimation results, we show that the Gamma-

based VDM was the most accurate model for the datasets by being better in 62.5% of

the cases.

- We also show that based upon our findings from prediction results, the Power-

law model provides most accurate predictions for the datasets by performing better than

other models in 62.5% of the cases.

4.3 Analysis

For each software, the variable we used in this research is the cumulative

number of vulnerabilities reported in 30 days’ time intervals. In other words, we splitted

the study period associated with a given software into intervals of 30 days, and counted

the total number of vulnerabilities detected in each interval. Then, we accumulated the

total number of detected vulnerabilities for each interval. For curve fitting, the eight

models were fitted to the eight datasets (for the four OSs and the four web browsers)

using a regression method described in [24]. To avoid overfitting, 10-fold cross

validation was also conducted using Python’s sklearn library [57]. The analysis of the

prediction capability is done for 2016, 2017, and 2018. During the training period

(before 2016), all the available data was used to estimate model parameters. The

estimated final values for each interval produced by the eight models were compared

with the actual number of vulnerabilities to calculate the prediction accuracy.

38

4.3.1 Curve-fitting error indicators

We applied the Chi-square (χ2) goodness of fit test [24] to see how well each

model fits the datasets. The χ2 statistic is calculated using the following equation:

χ2 = ∑
(𝑆𝑖 − 𝑂𝑖)

2

𝑂𝑖
 (16)

𝑁

𝑖=1

where 𝑆𝑖 and 𝑂𝑖 are the simulated and real observed values at 𝑖𝑡ℎ interval, respectively.

N is the number of observations. For the fit to be acceptable, the corresponding χ2

critical value should be greater than the χ2 statistic for the given alpha level and degrees

of freedom. We selected an alpha level of 0.05. The null hypothesis indicates that the

actual distribution is well described by the fitted model. Hence, if the p-value of the χ2

test is below 0.05, then the fit will be considered unsatisfactory. A p-value closer to 1

indicates a better fit.

R2 is another fitting statistic used in regression analysis [58]. A R2 value close

to 1 indicates a good fit. R2 values are usually used in linear regression analysis [59]

and might lead to some inaccuracy problem in the case of non-linear regression

analysis. However, since this metric has been used in previous studies, we decided to

also calculate it so that our results could be compared with these studies.

The root mean square error (RMSE) is often used in research to calculate fitting

errors. However, Mentaschi et al. [60] showed that for some applications (e.g., high

fluctuation of real data) the lower values of RMSE are not always a reliable indicator

of the accuracy of simulations. Hence, a corrected estimator HH was proposed by

Hanna and Heinold [61]:

39

𝐻𝐻 = √
∑ (𝑆𝑖 − 𝑂𝑖)2𝑁

𝑖=1

∑ 𝑆𝑖𝑂𝑖
𝑁
𝑖=1

 (17)

where 𝑆𝑖 is the 𝑖𝑡ℎ simulated data, 𝑂𝑖 is the 𝑖𝑡ℎ observation and N is the number of

observations (the time blocks used for simulation). The closer to zero HH is, the more

accurate the model.

4.3.2 Prediction error indicators

We calculated two normalized predictability measures, average error (AE) and

average bias (AB) [25]. AE is a measure of how well a model predicts throughout the

test phase, and AB indicates the general bias of the model, which assesses its tendency

to overestimate or underestimate the number of discovered vulnerabilities. AE and AB

are defined as:

𝐴𝐸 =
1

𝑛
∑ |

Ω𝑡 − Ω

Ω
|

𝑛

𝑡=1

 (18)

𝐴𝐵 =
1

𝑛
∑

Ω𝑡 − Ω

Ω

𝑛

𝑡=1

 (19)

where n is a total number of intervals (one per recorded detection date) over the

prediction period, and Ω is the actual number of total vulnerabilities, whereas Ω𝑡 is the

estimated number of total vulnerabilities at time t. AB can be positive (for

overestimation) or negative (for underestimation), while AE is always positive.

40

4.4 Curve-Fitting Results

The eight models were fitted to the eight datasets (for the four OSs and the four

web browsers) using a regression method described in [24]. To avoid overfitting, 10-

fold cross validation was also conducted using Python’s sklearn library [57]. In each

case, the model that has the smallest value of HH is selected as the best fitting model

and highlighted in green. If the HH values of two models were equal, we used the

RMSE values to differentiate them. The model with a higher value of RMSE becomes

the second best model, and highlighted in yellow. For models with equal HH and

almost equal RMSE (difference<=0.001), both models were highlighted in green.

4.4.1 Operating systems

The data and the fitted curves for the OSs are shown in Figure 3. Table 3

contains the χ2 goodness of fit test p-values, the values of R2, RMSE and HH for the

four OSs.

For the OSs, the Power-law model is only statistically sound with p-values greater than

0.05 for Linux. All the other VDMs are each significant in two cases. When comparing

HH values for Windows, IOS, and Linux, we observe that Gamma-based and Weibull-

based VDMs performed as well as the Power-law model. However, for Windows and

IOS, they are not statistically significant based on the generated p-values.

41

 Windows Mac IOS Linux

G
a

m
m

a

W
ei

b
u

ll

A
M

L

N
o

rm
a

l

P
o

w
er

-l
a

w

R
E

R
Q

Y
F

 Fitted models for operating systems

42

For Windows, the YF VDMs provides the best fit since it has smallest HH and

RMSE values as well as p-values greater than 0.05. For Mac, the Gamma and Weibull-

based VDMs as well as Power-law model and YF VDM led to statistically sound fits.

However, the Gamma-based VDM was selected as the best fit due to HH and RMSE

values lower than the other models. For IOS, all the models except RQ are statistically

sound. The models with smaller fitting errors (AML and Normal-based VDMs) were

selected as the best fits. For Linux, like Windows and IOS, all the models except RE

and YF are statistically sound. However, the Gamma and Weibull-based VDMs as well

as the Power-law have smallest HH values and relatively equal RMSEs. Thus, they are

the most accurate fits.

In addition, from Figure 3 we found that for the considered OSs, the

vulnerability discovery intensity function is still increasing. These software appear to

be in phase 2 (cf. Figure 2) and many vulnerabilities in these products are yet to be

discovered.

Table 3: CURVE FITTING ACCURACY FOR OSS

 Windows Mac
 p-value 𝑹𝟐 RMSE HH p-value 𝑹𝟐 RMSE HH

Gamma 0.686 0.998 38.549 0.033 0.193 0.993 52.139 0.061

Weibull 0.936 0.998 33.010 0.028 0.703 0.991 57.979 0.068

AML 0.956 0.999 30.643 0.026 0.001 0.988 67.885 0.080

Normal 0.956 0.999 30.704 0.026 0.001 0.987 68.033 0.080

Power-law 0.466 0.994 59.757 0.051 0.058 0.984 76.679 0.090

RE 0.026 0.983 102.871 0.088 0.000 0.968 108.229 0.128

RQ 0.888 0.995 58.298 0.050 0.002 0.988 67.651 0.080

YF 0.200 0.999 27.002 0.023 0.193 0.990 60.709 0.071

 IOS Linux

 p-value 𝑹𝟐 RMSE HH p-value 𝑹𝟐 RMSE HH

Gamma 0.981 0.995 9.727 0.054 0.640 0.985 105.371 0.085

Weibull 0.981 0.995 9.379 0.052 0.640 0.985 105.264 0.085

AML 0.990 0.997 7.391 0.041 0.630 0.977 129.095 0.105

Normal 0.990 0.997 7.403 0.041 0.630 0.977 129.338 0.105

Power-law 0.642 0.995 9.357 0.052 0.640 0.985 105.234 0.085

RE 0.150 0.998 9.044 0.053 0.006 0.983 110.346 0.089

RQ 0.000 0.973 22.993 0.128 0.222 0.985 105.901 0.086

YF 0.370 0.998 6.334 0.035 0.006 0.982 114.012 0.092

43

4.4.2 Web browsers

The data and the fitted curves for the web browsers, are shown in Figure 4.

Table 4 contains the χ2 goodness of fit test p-values, the values of R2, RMSE and HH

for the four web browsers.

For IE, all the models are statistically sound and YF has the lowest HH value.

Thus, it was selected as the best fit. For Safari, although all the models except RE are

statistically sound, Gamma-based VDM provided a better fit than other models based

on the HH values. For Firefox, Gamma-based VDMs is the best model since they have

p-values greater than 0.5 and smaller fitting error (HH and RMSE) than the other

models. For Chrome, Gamma-based VMD provided the best fit due to having the

smallest HH and RMSE values.

Table 4: CURVE FITTING ACCURACY FOR WEB BROWSERS

 IE Safari

 p-value 𝑹𝟐 RMSE HH p-value 𝑹𝟐 RMSE HH

Gamma 0.624 0.977 50.137 0.098 0.245 0.993 17.915 0.056

Weibull 0.624 0.978 50.051 0.098 0.739 0.993 18.945 0.059

AML 0.403 0.975 53.035 0.104 0.050 0.991 21.297 0.066

Normal 0.403 0.975 53.151 0.104 0.050 0.991 21.365 0.066

Power-law 0.624 0.978 50.041 0.098 0.378 0.984 27.731 0.086

RE 0.403 0.983 53.307 0.099 0.012 0.969 38.621 0.121

RQ 0.624 0.978 59.149 0.099 0.549 0.984 27.413 0.085

YF 0.285 0.983 44.100 0.086 0.986 0.992 19.629 0.061

 Firefox Chrome

 p-value 𝑹𝟐 RMSE HH p-value 𝑹𝟐 RMSE HH

Gamma 0.378 0.998 18.683 0.028 0.368 0.998 20.094 0.036

Weibull 0.307 0.998 18.826 0.029 0.368 0.994 32.551 0.059

AML 0.250 0.993 34.519 0.053 0.690 0.995 29.213 0.053

Normal 0.250 0.993 34.630 0.053 0.690 0.995 29.415 0.053

Power-law 0.307 0.998 20.032 0.031 0.240 0.962 83.910 0.153

RE 0.115 0.992 36.779 0.056 0.000 0.937 107.974 0.199

RQ 0.193 0.996 24.914 0.038 0.000 0.973 70.106 0.127

YF 0.150 0.996 24.543 0.037 0.400 0.996 25.641 0.046

44

 IE Safari Firefox Chrome

G
a

m
m

a

W
ei

b
u

ll

A
M

L

N
o

rm
a

l

P
o

w
er

-l
a

w

R
E

R
Q

Y
F

 Fitted models for web browsers

45

In Figure 4, the vulnerability data associated with IE and Chrome show a

saturation phase by the end of the learning phase, which means their discovery intensity

function has a decreasing trend at the end (i.e., the rate of discovery of new

vulnerabilities is predicted to decrease). Thus, these products appear to be in the

saturation phase (cf. Figure 2). For Safari, and Firefox, the discovery intensity functions

are increasing and constant, respectively.

4.3.4 Summary of Estimation Results

Overall, in terms of curve fitting, considering the OSs, Gamma and YF VDMs

were the best models in 50% of the cases, while the Weibull-based VDM and Power-

law model were the best models in 25% of the cases. Considering the web browsers,

Gamma-based VDM provided the best fits in 75% of the cases, whereas the YF VDM

was the best model in 25% of the cases. The other VDMs were better in none of the

cases. However, considering the OSs and the web browsers (8 cases), Gamma, Weibull,

AML, Normal, Power law, RE, RQ, and YF performed well in 5 (62.5%), 1(12.5%),

0(0%), 0(0%), 1(12.5%), 0(0%), 0(0%), and 3(37.5%) cases, respectively.

Therefore, based upon our findings from estimation results, the Gamma-based

VDM was the most accurate model for the datasets we analyzed.

4.5 Prediction Results

The analysis of the prediction capability is initiated after two-thirds of the time

period from the beginning of the vulnerability discovery process. During the training

period, all the available data was used to estimate model parameters. The estimated

final values for each 30-day interval produced by the eight models were compared with

46

the actual number of vulnerabilities to calculate the prediction accuracy. The model

that has the smallest value of AE and p-value≥0.05 was selected as having the best

prediction capability and is highlighted in green. Regarding p-values, we used * to

show the models with p<0.05. If the AE values of two models were equal, we selected

the best model based upon the AB and HH values. The model with a higher bias or HH

was selected as the second best model and is highlighted in yellow.

4.5.1 Operating systems

The normalized error values ((Ω𝑡 − Ω)/Ω) for the OSs are shown in Figure 5.

Table 5 presents the values of AE, AB, R2 and HH for the four OSs in our study.

Comparing prediction capabilities for Windows, we found that the Power-law model

has the smallest AE, AB, R2, and HH values.

Table 5: PREDICTION ACCURACY FOR OSS

 Windows Mac

 AE AB 𝑹𝟐 HH AE AB 𝑹𝟐 HH

Gamma 0.063 -0.061 271.445 0.095 0.218 -0.218 595.482 0.263

Weibull 0.091 -0.091 367.988 0.131 0.233 -0.233 640.863 0.287

AML 0.138 -0.138 511.292 0.187 0.278* -0.278 761.332 0.351

Normal 0.138 -0.138 511.292 0.187 0.278* -0.278 761.328 0.351

Power-law 0.037 0.025 119.646 0.040 0.074 -0.074 198.921 0.080

RE 0.106* 0.106 314.463 0.100 0.024* 0.017 95.639 0.037

RQ 0.039 0.030 125.961 0.042 0.082* -0.082 221.121 0.090

YF 0.114 -0.114 438.161 0.158 0.256 -0.256 703.498 0.320

 IOS Linux

 AE AB 𝑹𝟐 HH AE AB 𝑹𝟐 HH

Gamma 0.018 0.000 15.316 0.025 0.268 -0.268 1382.822 0.354

Weibull 0.019 0.005 17.105 0.027 0.267 -0.267 1378.715 0.352

AML 0.076 0.076 57.333 0.088 0.272 -0.272 1423.009 0.366

Normal 0.076 0.076 57.332 0.088 0.272 -0.272 1423.002 0.366

Power-law 0.019 0.006 17.366 0.028 0.267 -0.267 1377.862 0.352

RE 0.131 0.131 98.947 0.148 0.190* -0.190 987.650 0.239

RQ 0.154* -0.154 98.230 0.172 0.278 -0.278 1431.530 0.369

YF 0.092 0.092 70.902 0.108 0.240* -0.240 1248.693 0.313

For Mac, the Power-law model has the smallest values of AE, AB and HH. For

IOS, the Gamma-based VDM has the smallest value of AE. For Linux, the Weibull-

47

based VDM and Power-law model have the best results. Note that in Table 5 negative

values of AB indicate that the model may underestimate the total number of discovered

vulnerabilities.

 Normalized prediction error values for the models (OSs)

4.5.2 Web browsers

The normalized error values ((Ω𝑡 − Ω)/Ω) associated with the web browsers

are shown in Figure 6. Table 6 presents the values of AE, AB, R2 and HH for the four

web browsers in our study. For IE, YF VDM had the smallest error values. For Safari,

the Power-law model had the smallest prediction error values. For Firefox, Weibull-

based VDM provided the best prediction capabilities. For Chrome, the power-law

model had the smallest error values.

48

Table 6: PREDICTION ACCURACY FOR WEB BROWSERS

 IE Safari

 AE AB 𝑹𝟐 HH AE AB 𝑹𝟐 HH

Gamma 0.234 -0.234 402.761 0.273 0.156 -0.156 159.467 0.201

Weibull 0.233 -0.233 400.858 0.272 0.187 -0.187 190.325 0.245

AML 0.157 -0.157 270.708 0.175 0.231 -0.231 228.863 0.304

Normal 0.157 -0.157 270.706 0.175 0.231 -0.231 228.863 0.304

Power-law 0.233 -0.233 400.719 0.271 0.030 0.026 32.144 0.037

RE 0.149 -0.149 255.874 0.164 0.133* 0.133 130.867 0.141

RQ 0.232 -0.232 398.766 0.270 0.041 0.040 41.458 0.047

YF 0.141 -0.141 242.287 0.155 0.211 -0.211 212.086 0.278

 Firefox Chrome

 AE AB 𝑹𝟐 HH AE AB 𝑹𝟐 HH

Gamma 0.051 0.035 103.041 0.066 0.281 -0.281 527.771 0.367

Weibull 0.049 0.031 98.984 0.064 0.317 -0.317 590.544 0.422

AML 0.081 -0.081 162.703 0.112 0.307 -0.307 571.317 0.405

Normal 0.081 -0.081 162.703 0.112 0.307 -0.307 571.314 0.405

Power-law 0.069 0.067 140.551 0.089 0.167 0.167 355.845 0.191

RE 0.161 0.161 287.176 0.174 0.364* 0.364 776.614 0.383

RQ 0.096 0.096 180.913 0.113 0.077* 0.077 181.493 0.102

YF 0.051 -0.032 103.839 0.069 0.304 -0.304 567.935 0.402

 Normalized prediction error values for the models (web browsers)

49

4.5.4 Summary of prediction results

Overall, in terms of prediction, considering the OSs, the Power-law model

performed better in 3 (75%) cases. Gamma and Weibull-based VDMs provided better

prediction results in 1 (25%), and 1 (25%) cases, respectively. Normal-based, AML,

RE, RQ, and YF VDMs were selected in none of the cases. Considering web browsers,

the Power-law model led to better predictions in 2 (50%), while Weibull-based VDM

along with YF VDM each were selected as the best predictor in 1 (25%) case. However,

considering the OSs and the web browsers together (8 cases), Gamma, Weibull, AML,

Normal, Power law, RE, RQ, and YF VDMs provided satisfactory prediction results in

1 (12.5%), 2 (25%), 0 (0%), 0 (0%), 5 (62.5%), 0 (0%), 0 (0%), and 1 (12.5%) cases,

respectively.

Then, based upon our findings from prediction results, the Power-law model

yielded most accurate predictions for the datasets we analyzed.

Please remember that all the conclusions we draw from this research and their

validity are limited by our database uncertainties.

4.6 Discussion

Based on our results, we found that a model’s ability to provide a good fit does

not necessarily guarantee superior prediction capabilities. To the best of our

knowledge, there are few studies that have tried to provide guidance about which model

should be used in a given situation. Joh et al. [25] investigated the relationship between

the performance of five S-shaped VDMs (i.e., AML, Weibull, Gamma, Normal, and

Beta) and the skewness in vulnerability datasets for eight software.

50

Comparing our findings with those from Joh et al. [25], in terms of prediction,

we didn’t find any cases out of eight cases among asymmetrical datasets where the

AML VDM performed better than right-skewed distribution models - Joh et al. [25]

stated that AML model performs better than some right-skewed distribution models in

terms of prediction when the vulnerability discovery datasets are asymmetrical.

The model tendency to overestimate or underestimate the results is another

factor, which plays an important role in the procedure of model selection. We evaluated

the bias values (AB) and explained that the final decision is up to the researcher to

choose the best model based upon his/her priorities. However, from a security point of

view, it is better to choose a model, which provides more conservative prediction

results, if it has justifiable error values. In the current study, among the models that

were selected as the best predictors, seven models provided overestimated results.

Other selected models underestimated the number of vulnerabilities.

4.7 Limitations

There are several limitations to our work that prevent us from making more

general conclusions. One limitation is with regard to the uncertainty of the databases

we used. Vulnerability databases usually might have some uncertainty regarding

variables associated with the reported vulnerabilities such as published dates.

Another limitation is associated with using SRMs (the Power-law model) as

VDMs. Software reliability models usually assume that the time between failures

represents total usage time of that product. What we are using is calendar time, which

may not be a good proxy for usage. One important difference with security studies is

the difficulty in estimating the “attacker effort” - the total amount of time that an

51

attacker spends in finding a vulnerability - which is something that is not needed in the

context of reliability (we assume the users accidentally encounter faults that lead to

failures, hence usage time is a good enough proxy for time between failures). A useful

discussion of this is given in [30].

We have used all the vulnerabilities for all the versions of the products in our

study. While number of studies utilize vulnerability data associated with separate

version of software (e.g. Windows 7) on which to apply VDMs, there are papers that

consider all versions of a software together [25], [62]. The first group expects that each

version of a given software is an independent and all around characterized item, yet

distinguishing the sources of reliance in vulnerability data is not a simple task.

4.8 Summary

In this chapter, we applied the models introduced in Chapter 3 on the vulnerability

datasets associated with the operating systems and web browsers also discussed in

Chapter 3. Then, we compared the curve-fitting and prediction capability of these

models and investigated which models perform better in a given situation. Finally, we

presented some guidelines for using eight common VDMs to model vulnerability

discovery data based on a given dataset. In next chapter, we will test whether a

clustering approach improves the accuracy of the curve-fitting/prediction results.

52

Chapter 5: Clustering

5.1 Introduction

In this chapter, we will test whether a clustering approach improves the

accuracy of the curve-fitting/prediction results. We will focus on how clusters were

created for the different vulnerability datasets associated with the operating systems

and web browsers discussed in Chapter 3 and apply the five S-shaped VDMs and three

non-S-shaped VDMs also introduced in Chapter 3 on them. Then, we will compare the

curve-fitting and prediction capability of these models and will investigate which

models perform better in a given situation as well as compare them with the results

obtained without clustering (from Chapter 4).

5.2 Motivation

Several studies have applied SRMs/VDMs to estimate times between public

reports of vulnerabilities [3], [6]–[8], [17], [18]. In all the studies we are aware of, curve

fitting or/and prediction capabilities were estimated using all the vulnerabilities

together. We postulate that such analysis may miss some trends that apply to separate

categories of vulnerabilities, rather than all the vulnerabilities together.

Moreover, SRMs assume vulnerability detection to be an independent process.

However, this process might not be independent due, for example, to the discovery of

a new type of vulnerability that might prompt attackers to look for similar

vulnerabilities [5]. This assumption may lead to sub-optimal predictions on the next

reporting date of a vulnerability, or the total number of new vulnerabilities reported in

53

the next time interval. One way to mitigate these issues is to split vulnerabilities into

separate clusters and ensure that the clusters are independent.

In this chapter, we make the following contributions:

 - We present an approach that uses existing clustering techniques to group

vulnerabilities into distinct clusters, leveraging the textual information reported in these

vulnerabilities as a basis for constructing the clusters.

- Our approach uses existing VDMs to make predictions on the number of new

vulnerabilities that will be discovered in a given time period for each cluster for a given

OS/web browser;

- Our approach also superposes the VDMs used for each cluster together into a

single model for predicting the number of vulnerabilities that will be discovered in a

given time period for a given OS/web browser

- We show that, based upon our findings from prediction results, comparing

modeling strategies, the results with clustering were more accurate by performing

better that without clustering approach in 58% of the cases.

5.3 Data Processing

For each software, we included all the vulnerabilities reported for any of its

versions. For instance, all the vulnerabilities reported for mac_os, mac_os_server,

mac_os_x, and mac_os_x_server were put together to create a vulnerability database

for Mac.

To prepare the data for the clustering phase, we used text information within

vulnerabilities reports to label the vulnerabilities. The keywords for labelling (e.g.,

denial, injection, buffer, execute) were extracted from these reports. Tables 43 and 50

54

in Appendix A show the total number of vulnerabilities as well as the number of

labelled and non-labelled (vulnerabilities without any associated text information in the

database) vulnerabilities for the datasets (OSs and web browsers). For the labelled

vulnerabilities, we indicate the number and proportion of vulnerabilities associated

with a specific keyword. Note that vulnerabilities can be labelled with more than one

keyword.

For cluster analysis, we need to ensure that the features (keywords) are not

correlated. Therefore, we checked the Pearson correlation coefficient for every two

keywords per dataset. When we found statistically significant correlation, we merged

the correlated keywords with a title which included both terms. For instance, due to the

high correlation of .99 (p-value<0.001, 𝐻0: 𝜌 = 0) between “Execute” and “Code” for

all the datasets, these terms were treated as “Execute Code”. The same applied for the

keywords “SQL” and “Injection”. No other significant correlation was observed.

Figure 7 shows the diagram of our clustering approach.

 Diagram of the presented clustering approach

55

5.4 Clustering Method

We used the HPCLUS (High Performance Clustering) procedure in SAS 9.4

with the k-means and k-modes algorithms for clustering nominal input variables. This

procedure uses the least square method in k-means to compute cluster centroids. Each

iteration reduces the criterion (e.g., the least squared criterion for Euclidean distance)

until convergence is achieved or the maximum iteration number is reached [63].

Additionally, we set our method to cluster the data based upon the associated principal

component analysis (PCA) scores derived from the linear combinations of binary

attributes for each dataset. PCA reduces the number of features that might be correlated

to independent linear combinations of them [40].

To estimate the best number of clusters the aligned box criterion (ABC) method

was used. Among other existing methods, the cubic clustering criterion (CCC) is a

common metric which is usually used in clustering applications to find the most

suitable number of clusters [64]. In addition, Tibshirani et al. [65] introduced a gap

statistics method, which leverages Monte Carlo simulation for finding the best number

of clusters in a database. However, it has been found that the ABC method improves

the CCC and gap statistics methods by leveraging a high-performance machine-

learning based analysis structure [63]. Within-cluster dispersion is used as an error

measure (also called a ‘Gap’) by the ABC method [65]. In order to find the best number

of clusters, we applied the ABC method and compared the calculated Gap values over

a range of possible k values. The best number of clusters occurs at the maximum peak

value in Gap (k) [63].

56

After clustering, the most frequent keywords were selected to name the clusters

with respect to the keywords’ weights information provided in Appendix A. We

assumed that the keywords which covered at least 60% of vulnerabilities in each cluster

can be good representatives of relative clusters. If none of the keywords reached the

weight threshold of 0.6 in a cluster associated with a given software, the keyword with

greatest weight was selected as the cluster’s label.

5.4.1 Operating systems

We obtained 6, 6, 7, 7 clusters for Windows, Mac, IOS, and Linux, respectively.

The list of keywords associated with each of the six / seven clusters for Windows, Mac,

IOS, and Linux provided in Appendix A. Since none of the keywords reaches the

weight threshold of 0.6 in the fifth cluster associated with Mac, the keyword with the

greatest weight (Execute Code) was selected as the cluster’s label. Table 49 shows the

cluster summaries for the OSs. All the OSs have one cluster with a similar name. There

are also similarly named clusters within some OSs. However, after having analyzed

their linear correlation, we did not find any significant relationship based on the

Pearson correlation test.

5.4.2 Web browsers

Following the same clustering approach we explained for the OSs, we obtained

the following number of clusters: Internet Explorer (5), Safari (3), Firefox (5), and

Chrome (5). More details about the clusters and frequency of the keywords associated

with are provided in Appendix A. The cluster summaries for the browsers are shown

in Table 56.

57

5.5 Analysis

In repairable systems with only one type of failure, the intensity function

ω(𝑡)=𝑑𝐸[Ω(𝑡)]/𝑑𝑡 is often assumed to be a monotonic function of t. Similarly, for most

SRMs and VDMs, the intensity function (the detection rate of software

errors/vulnerabilities) is considered to be a monotonic function [56].

Let us expand the discussion for a software when there exists more than one

type of error. When any type of error independently causes the software normal

function to be compromised, then the superposition model represents the software

failures. Let us assume that we are dealing with vulnerabilities classified into

independent clusters. Considering a given model (NHPP Power-law or a distribution-

based VDM), let 𝛺𝑗(𝑡) denote the mean cumulative number of vulnerabilities from the

𝑗𝑡ℎ cluster in (0 t], with intensity function 𝜔𝑗(𝑡|𝛼𝑗 , 𝛽𝑗) where the function form of

𝜔𝑗(𝑡|𝛼𝑗 , 𝛽𝑗) is given and the values of the parameters 𝛼𝑗, 𝛽𝑗are unknown. It is assumed

that the number of vulnerabilities from any 𝑗𝑡ℎ cluster 𝛺𝑗(𝑡), 𝑗 = 1,2, … 𝐽 is

independent. A process 𝛺(𝑡) = ∑ 𝛺𝑗(𝑡)𝐽
𝑗=1 , which counts the total number of

vulnerabilities in the interval (0 t] for the superposition model, is also a same-type

model (NHPP Power-law/distribution-based model) with an intensity function

𝜔(𝑡|𝛼, 𝛽) = 𝜔1(𝑡|𝛼1, 𝛽1) + ⋯ + 𝜔𝐽(𝑡|𝛼𝐽, 𝛽𝐽), where 𝛼 = {𝛼1, … , 𝛼𝐽} , 𝛽 = {

𝛽1, … , 𝛽𝐽}. Since the superposition model keeps its type (all intensity functions are of

the same type), the associated superposition model can be applicable [56]. For instance,

considering the NHPP Power-law model, the equations become:

58

𝜔𝑗(𝑡|𝛼𝑗 , 𝛽𝑗) =
𝛼𝑗

𝛽𝑗
(

𝑡

𝛽𝑗
)

𝛼𝑗−1

=
𝛼𝑗𝑡𝛼𝑗−1

𝛽𝑗
𝛼𝑗

 (20)

𝛺(t) = ∫ ∑ 𝜔𝑗(𝑡|𝛼𝑗 , 𝛽𝑗) 𝑑𝑡

𝐽

𝑗=1

𝑡

0

 , 𝛼𝑗 > 0, 𝛽𝑗 > 0 (21)

In this chapter, we investigate the assessment results when relaxing the

monotonicity assumption of the intensity function that is prevalent in SRMs and

VDMs. Selecting a given VDM/SRM, we considered two approaches for each model.

The first approach uses non-clustered data (including only the labeled vulnerabilities)

(cf. Chapter 4). The second approach is the superposition of the same model fitted to

the clustered data (only the labelled vulnerabilities can be used to create the clusters),

which relaxes the monotonicity assumption of the intensity function.

For each software, the analysis was done in two steps. First, we used the training

data (note: the variable we used is the total number of vulnerabilities detected on 30

days’ time interval) to find the model parameters from the process of fitting models to

the data (clustered and non-clustered). In other words, similar to what we described in

Chapter 4, for the vulnerability data in each cluster, we divided the time axis into 30-

day intervals (t=0 is associated with the vulnerability with the earliest published date),

and counted the cumulative frequency of vulnerabilities detected in each interval. Non-

homogeneity of the clusters was also validated by looking at Laplace-trend test results

provided by MiniTab 16 to see whether there were meaningful trends in clusters.

Second, we used the estimated parameters and the models, and simulated

corresponding mean cumulative function (MCF) (one MCF for clustered data, and one

59

for non-clustered data) over the study period. For non-clustered data, we used the

results from Chapter 4.

When comparing the models with clustering versus those without-clustering,

for each software, the best approach is highlighted in green. In addition, for prediction

results, the negative AB values are colored in red (i.e., the associated model

underestimated the results). All the accuracy metrics, in terms of curve

fitting/prediction, are the same than in Chapter 4. For the models that used the clustered

data, the first and second best models are highlighted in yellow. Overall, green is used

to indicate the best modeling approach while yellow indicates the best models among

the models when applying clustering.

5.6 Curve-Fitting Results

In this section we provide the results regarding curve-fitting capabilities of the

models (comparing the results between clustered data and non-clustered data, and

comparing the results generated from clustering).

5.6.1 Operating systems

Tables 7-10 contain the Chi-square goodness of fit test for the clustering-based

MCF and the MCF without clustering, the values of R^2, RMSE and HH for the

vulnerabilities of the four operating systems in our study. For Windows and IOS, the

MCF without clustering yielded more accurate results in all the cases with p-

values>0.05 because of smaller RMSE and HH values. For Mac, only in one case, the

MCF with clustering performed better than the MCF without clustering. For Linux, the

MCF without clustering yielded more accurate results in two cases. Besides, among the

60

models uses non-clustered data and clustered data, in five cases neither of the MCFs

were statistically sound. We cannot compare these cases and call them as “invalid”

cases.

In addition, among the models with clustering, for Windows, the Gamma and

Weibull-based VDMs provide the best fits since they have smaller HH and RMSE

values. For Mac and IOS, the Gamma-based VDM leads to HH and RMSE values

lower than other VDMs. For Linux, the AML and Normal-based VDMs led to the

smallest and relatively equal HH values and provide the most accurate fits.

Table 7: CURVE FITTING ACCURACY FOR WINDOWS

Estimation

Windows

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.233 0.983 63.550 0.134 0.686 0.998 38.549 0.033

Weibull 0.233 0.981 63.996 0.135 0.936 0.998 33.010 0.028

AML 0.074 0.982 64.949 0.137 0.956 0.999 30.643 0.026

Normal 0.074 0.982 64.845 0.137 0.956 0.999 30.704 0.026

Power-law 0.098 0.990 101.389 0.202 0.466 0.994 59.757 0.051

RE 0.000 0.980 101.425 0.220 0.026 0.983 102.871 0.088

RQ 0.000 0.980 102.100 0.278 0.888 0.995 58.298 0.050

YF 0.074 0.982 64.845 0.137 0.200 0.999 27.002 0.023

Table 8: CURVE FITTING ACCURACY FOR MAC

Estimation

Mac

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.058 0.985 118.583 0.236 0.193 0.993 52.139 0.061

Weibull 0.058 0.984 121.376 0.242 0.703 0.991 57.979 0.068

AML 0.000 0.986 121.620 0.244 0.001 0.988 67.885 0.080

Normal 0.000 0.986 120.570 0.241 0.001 0.987 68.033 0.080

Power-law 0.072 0.987 131.265 0.247 0.058 0.984 76.679 0.090

RE 0.059 0.986 129.168 0.245 0.000 0.968 108.229 0.128

RQ 0.000 0.890 150.230 0.360 0.002 0.988 67.651 0.080

YF 0.114 0.986 121.621 0.244 0.193 0.990 60.709 0.071

Table 9: CURVE FITTING ACCURACY FOR IOS

Estimation

IOS

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.170 0.992 399.504 1.130 0.981 0.995 9.727 0.054

Weibull 0.175 0.993 404.167 1.138 0.981 0.995 9.379 0.052

AML 0.076 0.990 450.814 1.224 0.990 0.997 7.391 0.041

Normal 0.076 0.991 458.197 1.237 0.990 0.997 7.403 0.041

Power-law 0.055 0.990 405.189 1.140 0.642 0.995 9.357 0.052

RE 0.000 0.987 410.026 1.149 0.150 0.998 9.044 0.053

RQ 0.000 0.987 450.159 1.219 0.000 0.973 22.993 0.128

YF 0.098 0.991 408.237 1.140 0.370 0.998 6.334 0.035

61

Table 10: CURVE FITTING ACCURACY FOR LINUX

Estimation

Linux

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.371 0.994 166.381 0.167 0.640 0.985 105.371 0.085

Weibull 0.371 0.991 129.92 0.134 0.640 0.985 105.264 0.085

AML 0.560 0.990 104.775 0.110 0.630 0.977 129.095 0.105

Normal 0.560 0.994 105.670 0.110 0.630 0.977 129.338 0.105

Power-law 0.392 0.990 128.021 0.148 0.640 0.985 105.234 0.085

RE 0.075 0.992 145.390 0.155 0.006 0.983 110.346 0.089

RQ 0.171 0.992 147.008 0.156. 0.222 0.985 105.901 0.086

YF 0.151 0.994 128.620 0.149 0.006 0.982 114.012 0.092

5.6.2 Web browsers

Tables 11-14 contain the Chi-square goodness of fit test values for the

clustering-based MCF and the MCF without clustering, the values of R^2, RMSE and

HH for the vulnerabilities of the four web browsers in our study. For all the cases with

p-values>0.05, the MCF without clustering led to more accurate results than those from

clustering-based MCFs, because of having smaller RMSE and HH values as well as

having statistically sound p-values. Besides, among the models uses non-clustered data

and clustered data, in three cases neither of the MCFs were statistically sound.

In addition, among the models with clustering, for IE, the Power-law model led

to the smallest values of HH and RMSE. For Safari, the AML and Normal-based VDMs

provided better fits than other models. For Firefox, Gamma and Weibull-based VDMs

are the best models since they have smaller fitting errors (HH and RMSE) than other

models. For Chrome, Gamma-based VMD provided the best fit due to smaller HH and

RMSE values.

62

Table 11: CURVE FITTING ACCURACY FOR IE

Estimation

IE

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.169 0.997 65.088 0.342 0.624 0.977 50.137 0.098

Weibull 0.469 0.997 64.970 0.341 0.624 0.978 50.051 0.098

AML 0.012 0.997 69.876 0.372 0.403 0.975 53.035 0.104

Normal 0.012 0.997 69.882 0.372 0.403 0.975 53.151 0.104

Power-law 0.162 0.973 56.496 0.285 0.624 0.978 50.041 0.098

RE 0.067 0.997 69.872 0.368 0.403 0.983 53.307 0.099

RQ 0.000 0.990 62.805 0.285 0.624 0.978 59.149 0.099

YF 0.529 0.997 65.079 0.341 0.285 0.983 44.100 0.086

Table 12: CURVE FITTING ACCURACY FOR SAFARI

Estimation

Safari

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.057 0.884 125.658 0.878 0.245 0.993 17.915 0.056

Weibull 0.057 0.880 125.476 0.878 0.739 0.993 18.945 0.059

AML 0.080 0.883 98.623 0.763 0.050 0.991 21.297 0.066

Normal 0.080 0.810 96.776 0.769 0.050 0.991 21.365 0.066

Power-law 0.080 0.92 129.947 0.887 0.378 0.984 27.731 0.086

RE 0.052 0.91 125.250 0.884 0.012 0.969 38.621 0.121

RQ 0.039 0.95 130.402 0.890 0.549 0.984 27.413 0.085

YF 0.000 0.880 120.714 0.860 0.986 0.992 19.629 0.061

Table 13: CURVE FITTING ACCURACY FOR FIREFOX

Estimation

Firefox

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.294 0.998 22.944 0.056 0.378 0.998 18.683 0.028

Weibull 0.294 0.998 23.704 0.058 0.307 0.998 18.826 0.029

AML 0.115 0.996 32.155 0.080 0.250 0.993 34.519 0.053

Normal 0.115 0.996 32.185 0.080 0.250 0.993 34.630 0.053

Power-law 0.053 0.990 31.791 0.078 0.307 0.998 20.032 0.031

RE 0.054 0.998 31.850 0.079 0.115 0.992 36.779 0.056

RQ 0.000 0.996 45.291 0.155 0.193 0.996 24.914 0.038

YF 0.113 0.990 32.001 0.080 0.150 0.996 24.543 0.037

Table 14: CURVE FITTING ACCURACY FOR CHROME

Estimation

Chrome

With clustering Without clustering

p-value R-sq RMSE HH p-value R-sq RMSE HH

Gamma 0.137 0.998 57.890 0.123 0.368 0.998 20.094 0.036

Weibull 0.137 0.998 60.450 0.128 0.368 0.994 32.551 0.059

AML 0.385 0.997 62.917 0.134 0.690 0.995 29.213 0.053

Normal 0.385 0.997 62.913 0.134 0.690 0.995 29.415 0.053

Power-law 0.106 0.978 82.021 0.174 0.240 0.962 83.910 0.153

RE 0.000 0.998 115.135 0.291 0.000 0.937 107.974 0.199

RQ 0.000 0.996 81.852 0.170 0.000 0.973 70.106 0.127

YF 0.280 0.978 60.455 0.128 0.400 0.996 25.641 0.046

63

5.6.3 Summary of Curve-Fitting Results

Overall, in terms of curve-fitting, considering the OSs, the models that were

using non-clustered data performed better in 24 cases out of 27 valid cases (the valid

cases are those with at least one statistically sound MCF). Considering web browsers,

again the non-clustering approach led to more accurate results in all the valid cases (29

cases). Considering the OSs and the web browsers together (8 cases), out of 56 valid

cases (8 datasets * eight models per dataset – invalid models) we analyzed, in terms of

estimation, the approach without-clustering led to more accurate results in 53 (94.6%)

cases.

Comparing with-clustering results together, in terms of curve fitting, out of

eight datasets, the Gamma-based VDMs was best in five (62.5%) cases. The Weibull,

AML, and Normal VDMs each were equally best in two (25%) cases. The Power-law

model was most accurate in one (12.5%) case.

Therefore, based upon our findings from estimation results, comparing

modeling strategies, the results from the non-clustered approach were more

accurate than those from the clustered approach.

However, when comparing clustering results together, the Gamma-based

VDM was the most accurate model given all the datasets we had.

5.7 Prediction Results

In this section, we provide the results regarding prediction capabilities of the

models (comparing the obtained predictions with clustered data and non-clustered data,

and comparing the results generated from the clustering approach). For each case, the

model that has the smallest value of AE and p-value≥0.05 was selected as having the

64

best prediction capability and is highlighted in green. Regarding p-values, we used * to

show the models with p<0.05.

5.7.1 Operating systems

Tables 15-18 present the values of AE, AB, R2 and HH for the four operating

systems in our study. Eight models per software were analyzed. There are five cases

where neither of the MCFs were statistically sound (five invalid cases). For Windows,

in all the valid VDMs but RQ, the MCFs with clustering led to more accurate results

compared to the MCFs without clustering. For Mac, in four cases out of five valid

cases, the MCF with clustering led to more accurate results. For IOS, the MCFs without

clustering led to more accurate results in all the valid cases. For Linux, for all the

models except Gamma-based VDM, the MCFs with clustering resulted in the most

accurate prediction results.

In addition, comparing with-clustering, for Windows and Mac, the AML VDM

and the YF VDM have the smallest values of AB, AE and HH, respectively. For IOS,

the Weibull-based VDM and the Power-law model have the smallest AE values.

However, the HH values show that the Power-law model should be selected as the first

best model. For Linux, Weibull-based VDM has the best results. Note that negative

values of AB indicate that the model may underestimate the total number of discovered

vulnerabilities.

65

Table 15: PREDICTION ACCURACY FOR WINDOWS

Prediction

Windows

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.037 -0.037 0.96 0.060 0.063 -0.061 0.94 0.095

Weibull 0.035 -0.045 0.97 0.049 0.091 -0.091 0.94 0.131

AML 0.015 -0.015 0.99 0.018 0.138 -0.138 0.88 0.187

Normal 0.021 -0.021 0.99 0.035 0.138 -0.138 0.88 0.187

Power-law 0.035 -0.031 0.84 0.046 0.037 0.025 0.90 0.040

RE 0.021* -0.019 0.86 0.035 0.106* 0.106 0.86 0.100

RQ 0.033* -0.040 0.98 0.040 0.039 0.030 0.95 0.042

YF 0.036 -0.032 0.96 0.050 0.114 -0.114 0.94 0.158

Table 16: PREDICTION ACCURACY FOR MAC

Prediction

Mac

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.080 -0.041 0.97 0.175 0.218 -0.218 0.99 0.263

Weibull 0.061 -0.027 0.98 0.265 0.233 -0.233 0.99 0.287

AML 0.032* 0.0194 0.99 0.234 0.278* -0.278 0.97 0.351

Normal 0.153* -0.130 0.98 0.309 0.278* -0.278 0.97 0.351

Power-law 1.059 1.059 0.58 0.786 0.074 -0.074 0.94 0.080

RE 0.119 0.890 0.86 0.279 0.024* 0.017 0.97 0.037

RQ 0.270* -0.202 0.89 0.361 0.082* -0.082 0.86 0.090

YF 0.035 -0.035 0.98 0.236 0.256 -0.256 0.99 0.320

Table 17: PREDICTION ACCURACY FOR IOS

Prediction

IOS

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.260 -0.181 0.95 0.367 0.018 0.000 0.97 0.025

Weibull 0.259 -0.179 0.95 0.379 0.019 0.005 0.98 0.027

AML 0.502 -0.501 0.87 0.894 0.076 0.076 0.98 0.088

Normal 0.598 -0.598 0.74 1.142 0.076 0.076 0.95 0.088

Power-law 0.259 -0.179 0.90 0.365 0.019 0.006 0.87 0.028

RE 0.492* -0.492 0.87 0.853 0.131 0.131 0.86 0.148

RQ 0.492* -0.318 0.84 1.142 0.154* -0.154 0.86 0.172

YF 0.263 -0.155 0.95 0.373 0.092 0.092 0.99 0.108

Table 18: PREDICTION ACCURACY FOR LINUX

Prediction

Linux

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.274 -0.274 0.95 0.398 0.268 -0.268 0.94 0.354

Weibull 0.032 0.013 0.99 0.032 0.267 -0.267 0.74 0.352

AML 0.142 0.091 0.98 0.132 0.272 -0.272 0.78 0.366

Normal 0.091 0.063 0.99 0.082 0.272 -0.272 0.78 0.366

Power-law 0.037 0.037 0.83 0.037 0.267 -0.267 0.70 0.352

RE 0.174 -0.174 0.85 0.398 0.190* -0.190 0.95 0.239

RQ 0.274 -0.274 0.90 0.398 0.278 -0.278 0.74 0.369

YF 0.083 0.083 0.98 0.074 0.240* -0.240 0.85 0.313

66

5.7.2 Web browsers

Tables 19-22 present the values of AE, AB, R2 and HH for the four web

browsers in our study. Again, eight models per software were analyzed. There are two

cases where neither of the MCFs were statistically sound (two invalid cases). For IE,

for all the VDMs but not for the Power-law model, the MCFs without clustering led to

more accurate results compared to the MCFs without clustering. For Safari, in all the

VDMs but the Power-law model and RE VDM, the MCFs without clustering led to

most accurate results. For Firefox, for all the VDMs but not for the RQ VDM, the

MCFs with clustering led to most accurate results. For Chrome, all the MCFs with

clustering led to the more accurate results compared to the MCFs without clustering.

In addition, comparing with-clustering, for IE, Safari, and Firefox, the Power-

law model had the smallest error values. For Chrome, the Gamma-based VDM had the

smallest error values.

Table 19: PREDICTION ACCURACY FOR IE

Prediction

IE

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.240 -0.230 0.99 0.302 0.234 -0.234 0.97 0.273

Weibull 0.280 -0.280 0.99 0.329 0.233 -0.233 0.98 0.272

AML 0.294* -0.294 0.99 0.347 0.157 -0.157 0.99 0.175

Normal 0.295* -0.295 0.99 0.347 0.157 -0.157 0.99 0.175

Power-law 0.108 0.074 0.89 0.184 0.233 -0.233 0.89 0.271

RE 0.276 -0.276 0.97 0.326 0.149 -0.149 0.92 0.164

RQ 0.308* -0.308 0.97 0.372 0.232 -0.232 0.88 0.270

YF 0.240 -0.230 0.99 0.302 0.141 -0.141 0.97 0.155

Table 20: PREDICTION ACCURACY FOR SAFARI

Prediction

Safari

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.609 -0.609 0.79 1.126 0.156 -0.156 0.94 0.201

Weibull 0.611 -0.611 0.79 1.134 0.187 -0.187 0.94 0.245

AML 0.656 -0.656 0.67 1.278 0.231 -0.231 0.88 0.304

Normal 0.656 -0.656 0.68 1.280 0.231 -0.231 0.88 0.304

Power-law 0.023 -0.018 0.90 0.026 0.030 0.026 0.90 0.037

RE 0.640 -0.640 0.70 1.248 0.133* 0.133 0.88 0.141

RQ 0.640 -0.566 0.85 1.251 0.041 0.040 0.99 0.047

YF 0.616* -0.612 0.83 1.140 0.211 -0.211 0.86 0.278

67

Table 21: PREDICTION ACCURACY FOR FIREFOX

Prediction

Firefox

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.017 -0.017 0.99 0.026 0.051 0.035 0.99 0.066

Weibull 0.020 -0.020 0.99 0.029 0.049 0.031 0.99 0.064

AML 0.024 -0.024 0.98 0.023 0.081 -0.081 0.99 0.112

Normal 0.034 -0.034 0.95 0.032 0.081 -0.081 0.98 0.112

Power-law 0.015 0.014 0.99 0.015 0.069 0.067 0.98 0.089

RE 0.034 -0.034 0.96 0.030 0.161 0.161 0.89 0.174

RQ 0.075* -0.054 0.86 0.032 0.096 0.096 0.99 0.113

YF 0.021 -0.021 0.99 0.022 0.051 -0.032 0.99 0.069

Table 22: PREDICTION ACCURACY FOR CHROME

Prediction

Chrome

With clustering Without clustering

AE AB R-sq HH AE AB R-sq HH

Gamma 0.173 -0.173 0.99 0.167 0.281 -0.281 0.99 0.367

Weibull 0.225 -0.225 0.98 0.215 0.317 -0.317 0.99 0.422

AML 0.232 -0.232 0.99 0.222 0.307 -0.307 0.99 0.405

Normal 0.232 -0.232 0.99 0.222 0.307 -0.307 0.99 0.405

Power-law 0.324 0.324 0.94 0.345 0.167 0.167 0.94 0.191

RE 0.298* -0.298 0.86 0.305 0.364* 0.364 0.89 0.383

RQ 0.334* 0.324 0.94 0.345 0.077* 0.077 0.99 0.102

YF 0.225 -0.225 0.98 0.213 0.304 -0.304 0.95 0.402

5.7.3 Summary of Prediction Results

In terms of prediction accuracy, considering the OSs, out of 27 valid cases (4

OS and 8 models excluding invalid cases), the MCFs that used clustered data led to

more accurate results in 17 (63%) cases than those which used non-clustered data.

Considering web browsers, the MCFs with-clustering has most accurate results in 16

(53.3%) cases, out of the 30 valid cases we analyzed. However, considering the OSs

and web browsers together, out of 57 valid cases analyzed (8 software and 8 models

excluding 7 invalid cases), in terms of prediction accuracy, the MCFs with clustering

approach led to more accurate results in 33 (58%) cases.

Overall, in terms of prediction accuracy, out of 57 valid cases (eight datasets

multiplied by eight models per dataset minus seven invalid cases), the MCF with

68

clustering led to more accurate results in 33 (58%) cases, while the MCF without

clustering resulted in more accurate results in 24 (42%) cases.

Comparing with-clustering results together, in terms of prediction, out of eight

datasets, the Power-law model and the Weibull-based VDM was the most accurate in

four (50%) and two (25%) cases, respectively. The Gamma-based, AML and YF

VDMs each were equally best in one (12.5%) cases. The other VDMs was best in

neither of the cases.

Therefore, based upon our findings from prediction results, comparing

modeling strategies, the results with clustering were more accurate for eight

datasets we analyzed.

Comparing with-clustering results together, in terms of prediction accuracy, the

Power-law model was the most accurate model.

Please remember that all the conclusions we draw from this research and their

validity are limited by our database uncertainties.

5.8 Discussion

In this chapter, we explored the applicability of clustering to vulnerability data,

and investigated whether this approach can lead to more accurate predictions with

common SRMs/VDMs. Our results show that the cluster-based approach provided

better prediction results than without clustering for our datasets. We have summarized

our findings in the guidelines presented in Table 23:

69

Table 23: MODELING GUIDELINE

 Approach

Without Clustering With- Clustering

fitting prediction fitting prediction

Model Gamma Power-law Gamma Power-law

5.9 Limitations

The main limitations of this chapter are the following:

 One limitation is with regard to the uncertainty of the databases we used.

Vulnerability databases usually might have some uncertainty regarding

variables associated with the reported vulnerabilities such as published dates.

 We have only applied the approach to 8 software. We don’t know yet how well

this works for other vulnerability datasets associated with a software, though

we plan to extend this work in the future. Since we integrated all the

vulnerabilities associated with multiple versions of a software and it might have

triggered some sources of dependency, we plan to rebuild the datasets we used.

In other words, for a given software, we will integrate the versions in which

their source codes have reached a threshold of similarity. We will define a

similarity metric.

 We have applied the approach to all the vulnerabilities of a software, rather than

subdivided by version type. This was mainly because the sample size of

vulnerabilities get much smaller when considering individual versions. Other

researchers have looked at individual versions separately [24]. However, we

70

believe that different versions of a software cannot be assumed completely

independent since different versions have large overlaps in their code base.

5.10 Summary

In this chapter, we used a common clustering technique to group the

vulnerabilities into distinct clusters, using the textual information reported in these

vulnerabilities. We have applied our approach on the vulnerabilities datasets introduced

in Chapter 3. We also investigated whether this approach could result in more accurate

results, in terms of estimation/prediction, compared to the case where all the

vulnerabilities estimated together (results from Chapter 3). In next chapter, we will

investigate different vulnerability grouping approaches.

71

Chapter 6: A Comparison of Vulnerabilities’ Grouping

Strategies

6.1 Introduction

In this chapter, we present some guidelines to model vulnerability discovery

data based on two commonly employed vulnerabilities’ grouping strategies. In the first

strategy, for each software, we analyze all vulnerabilities reported for any of its

versions. In the second strategy, for each software, we select only versions for which

there are most vulnerabilities shared by two subsequent versions of the product. We

used the eight models introduced in Chapter 3 (eight common VDMs) for the discovery

process of vulnerabilities in the eight well-known software (four operating systems and

four web browsers) also introduced in Chapter 3. The accuracy of these models was

investigated based on their fitting and prediction capabilities.

6.2 Motivation

Many studies choose all vulnerabilities when assessing product families. This

may be difficult to justify for products with long lifespans: some of the older

vulnerabilities have long been fixed, and the code-based of these products is likely to

have evolved significantly.

Other studies [24], [32] asses specific versions of products and only consider

vulnerabilities that have been reported for those specific versions. This may be too

restrictive as a subsequent version of the same product family is likely to share a large

72

proportion of the code base with its predecessor. Hence it is also likely to share a large

proportion of the vulnerabilities.

Our research question investigates whether we can improve the results by

filtering a given vulnerability dataset associated with a product with only versions for

which there are most vulnerabilities shared by two subsequent versions of the product.

In other words, the question is “should we only consider the vulnerabilities associated

with a single version of a software for our modeling or all vulnerabilities reported for

any of its versions?”. To answer these questions, we need to consider each scenario

separately and compare their results.

In this chapter, we make the following contributions:

- We use two strategies for grouping vulnerabilities (vulnerabilities merged

for all versions and groups built based on a number of common

vulnerabilities across versions).

- We apply eight common VDMs on the mentioned groups and compare

their curve-fitting and prediction capabilities to derive a guideline.

6.3 Grouping Strategy

As mentioned is Chapter 3, we will analyze the reported vulnerabilities

associated with four well-known OSs: Windows (1995-2017), Mac (1997-2017), IOS

(the OS associated with Cisco) (1992-2017), and Linux (1994-2017), as well as four

well-known web browsers including Internet Explorer (1997-2017), Safari (2003-

2017), Firefox (2003-2017), and Chrome (2008-2017). These software have been

selected because they are the most widely used and have the most vulnerabilities among

the databases.

73

For each software, we considered two grouping strategies. In the first strategy

(St. 1), for each software, we analyze all vulnerabilities reported for any of its versions.

Thus, for each software, all the vulnerabilities reported for any of its versions were

included. For instance, all the vulnerabilities reported for mac_os, mac_os_server,

mac_os_x, and mac_os_x_server were put together to create a vulnerability database

for Mac.

In the second strategy (St. 2), for each software, we group versions based on

the percentage of common vulnerabilities (i.e., we group the consecutive versions with

more than 70% common reported vulnerabilities). We assume the percentage of

common vulnerabilities for two or more consecutive versions of a software be a good

measure regarding the similarity of their source code. We selected 70% as a threshold

for versions of high level of source code similarity that should be analyzed together.

Table 24 shows the percentage of common vulnerability within some versions of

Firefox. The threshold is met for versions 0.x, 1.x, 2.x and their associated

vulnerabilities can be grouped together. Even though the threshold is also met for

versions 0.x and 3.x, we do not consider them as a separate group since they are not

consecutive versions. For the software versions that don’t satisfy this condition we only

consider the product with the most vulnerabilities reported (e.g., Linux_Kernel).

Table 24: PERCENTAGE OF COMMON VULNERABILITIES WITHIN FIREFOX VERSIONS

Versions (% of

common vuls.)

Firefox

0.x

Firefox

1.x

Firefox

2.x

Firefox

3.x

Firefox 0.x 1 0.94 0.79 0.71

Firefox 1.x * 1 0.70 0.52

Firefox 2.x * * 1 0.63

Firefox 3.x * * * 1

74

Table 25 presents the total number of vulnerabilities for each software (All

versions together (St. 1) and versions grouped based on the similarity threshold (St. 2))

as well as their skewness values. All the datasets associated with the eight software we

analyzed are right skewed (each has a positive skewness value with an absolute value

of skewness greater than 0.5). Safari was not considered in St. 2 since we didn’t have

enough vulnerabilities for modeling by grouping the versions with more than 70%

common vulnerabilities.

Table 25: NUMBER OF VULNERABILITIES PER SOFTWARE

OS (St.1) Windows Mac IOS Linux

Vulnerabilities 3100 2705 650 4745

Skewness 2.10 2.19 3.12 3.50
Web Browser

(St.1)
IE Safari Firefox Chrome

Vulnerabilities 1775 943 1477 1837

Skewness 2.65 2.98 10.00 1.63

OS (St.2)

Windows

Vista &

7

Mac

OS_X

IOS

11.x &

12.x

Linux

Kernel

Vulnerabilities 1054 1907 317 1993

Skewness 1.52 0.63 0.51 2.79

Web Browser

(St.2)

IE (5.x,

6.x)

IE (9.x,

10.x)

IE

(10.x,

11.x)

Firefox

(0.x,

1.x, 2.x)

Vulnerabilities 667 720 677 882

Skewness 1.07 2.34 2.50 8.05

Web Browser

(St.2)

Chrome

(0.x, 1.x,

2.x)

Chrome

(3.x,

4.x)

Vulnerabilities 878 959

Skewness 0.86 1.35

6.4 Analysis

Like what we described in Chapter 4, for the vulnerability data in each group,

we divided the time axis into 30-day intervals (t=0 is associated with the vulnerability

with the earliest published date), and counted the cumulative frequency of

75

vulnerabilities detected in each interval. The regression and the analysis methods we

used described in Section 4.3.

6.4.1 Curve-fitting error indicators

We used the eight models for the discovery process of vulnerabilities introduced

in Chapter 3 in eight well-known software (four operating systems and four web

browsers). The models were fitted to the 18 datasets (8 datasets from St. 1 and 10

datasets from St. 2) using a non-linear regression method described in [24]. Most of the

error indicators considered in this chapter are the same than in previous chapters (χ2,

HH). However, we added a few more indicators for better judgment between the

models.

The Akaike Information Criteria (AIC) is frequently used to make a fair

comparison between models. It also accounts for overfitting detection by penalizing

the models with an issue of overfitting whereas metrics like χ2 don’t have such

capability. AIC is formally defined as:

𝐴𝐼𝐶 = (−2 × 𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2M (22)

where M is the number of free parameters of the examined model. Alhazmi & Malaiya

in [18], [21] reported the AIC values. To compare two models, we consider their

difference:

Δi = AIC𝑖 − AIC𝑚𝑖𝑛 (23)

where AIC𝑖 is the AIC of the i-th model, and AIC𝑚𝑖𝑛n is the lowest AIC one obtains

among the set of models examined (i.e., the preferred model). The rule of thumb,

76

outlined in [66], is: if Δi<2 , then there is substantial support for the i-th model (or the

evidence against it is worth only a bare mention), and the proposition that it is a proper

description is highly probable; if 2<Δi<4, then there is strong support for the i-th model;

if 4<Δi<7, then there is considerably less support for the i-th model; models with Δi>10

have essentially no support. In this chapter, models with Δi<4 were selected as the best

models.

6.4.2 Prediction error indicators

In addition to AE and AB, we also report %ΔAE𝑖, which represents the

percentage of difference between the AE of the i-the model and the model with

minimum AE

%ΔAE𝑖 = (AE𝑖 − AE𝑚𝑖𝑛) ∗ 100 (24)

where AE𝑖 is the AE of the i-th model, and AE𝑚𝑖𝑛 is the lowest AE obtained among the

set of models examined (i.e., the best model).

6.5 Curve-Fitting Results

6.5.1 Operating systems

Tables 26-27 contain the χ2 goodness of fit test p-values, HH, the AIC values,

and Δi for the OSs (St. 1 and St. 2) and the web browsers (St. 1 and St. 2), respectively.

In each case, the model that has the smallest values of HH and AIC is selected as the

best fitting model and highlighted in green. The other models with Δi<4 are also

selected as the best models.

77

Table 26: CURVE FITTING ACCURACY FOR OSS (ST.1)

 Windows Mac

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 1.00 0.03 2914.58 0.00 1.00 0.07 6080.39 5.78

Weibull 1.00 0.03 2916.34 1.75 1.00 0.07 6079.86 5.26

AML 1.00 0.05 3083.02 168.43 0.99 0.08 6252.64 178.04

Normal 1.00 0.05 3082.02 167.43 0.99 0.08 6251.64 177.04

Power-law 1.00 0.05 3075.58 161.00 1.00 0.07 6077.50 2.90

RE 1.00 0.08 3381.79 467.21 0.99 0.08 6165.09 90.49

RQ 1.00 0.05 3078.25 163.66 1.00 0.07 6074.60 0.00

YF 1.00 0.04 2967.94 53.36 0.98 0.08 6166.42 91.81

 IOS Linux

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 0.25 0.03 2220.06 102.65 0.46 0.119 20506.23 1036.55

Weibull 0.43 0.03 2216.41 99.00 0.78 0.118 20493.64 1023.95

AML 1.00 0.03 2118.41 1.00 0.47 0.108 20240.71 771.02

Normal 1.00 0.03 2117.41 0.00 0.98 0.083 19469.69 0.00

Power-law 0.48 0.03 2213.77 96.36 0.99 0.118 20490.83 1021.14

RE 0.00 0.04 2288.65 171.24 0.99 0.088 19652.27 182.59

RQ 0.00 0.07 2633.48 516.06 0.00 0.134 20856.60 1386.91

YF 1.00 0.03 2152.12 34.71 0.99 0.088 19652.72 183.04

Table 27: CURVE FITTING ACCURACY FOR OSS (ST.2)

 Windows (Vista & 7) Mac_OS_X

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 0.99 0.07 1830.80 39.84 0.23 0.12 3236.55 77.19

Weibull 0.99 0.07 1829.74 38.78 0.45 0.12 3235.16 75.81

AML 0.00 0.10 1932.50 141.53 0.90 0.11 3188.84 29.49

Normal 0.00 0.10 1931.50 140.53 0.98 0.11 3178.92 19.57

Power-law 0.98 0.07 1827.65 36.69 0.16 0.12 3233.08 73.72

RE 0.99 0.07 1790.96 0.00 1.00 0.10 3159.35 0.00

RQ 0.98 0.07 1810.02 19.06 0.99 0.12 3238.09 78.74

YF 1.00 0.07 1794.40 3.44 0.99 0.10 3164.66 5.31

 IOS (11.x & 12.x) Linux_Kernel

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 0.27 0.05 852.90 99.33 0.99 0.05 7325.63 73.01

Weibull 0.72 0.04 827.59 74.01 0.99 0.05 7320.49 67.88

AML 1.00 0.03 754.58 1.00 0.98 0.06 7389.79 137.17

Normal 1.00 0.03 753.58 0.00 0.98 0.06 7388.79 136.17

Power-law 1.00 0.06 923.13 169.55 0.76 0.05 7317.41 64.79

RE 0.00 0.09 997.64 244.06 1.00 0.05 7252.62 0.00

RQ 0.14 0.07 953.12 199.54 0.00 0.06 7568.41 315.79

YF 1.00 0.03 762.78 9.21 1.00 0.05 7275.13 22.52

For OSs (St. 1 and St. 2), in all cases, most of the models are statistically sound

with p-values greater than 0.05. RE and RQ VDMs each resulted in unsound p-values

in two cases. However, we cannot accept all the models with sound p-values and have

to consider their associated Δi values. Comparing grouping strategies, in terms of curve

fitting, the AML and Normal-based VDMs were the best models for IOS in both

strategies. However, for other OSs, the results associated with St. 1 and St. 2 differ.

78

6.5.2 Web browsers

Tables 28-29 contain the χ2 goodness of fit test p-values, HH, the AIC values,

and Δi for the web browsers (St. 1 and St. 2) and the web browsers (St. 1 and St. 2),

respectively.

For web browsers (St. 1), most of the models still have statistically sound p-

values. However, this is not true for web browsers (St. 2). Comparing the grouping

strategies, there is no common best model within Chrome (St. 1) and Chrome (3.x, 4.x).

Comparing grouping strategies, in terms of curve fitting, for Chrome and one of its

subversions (Chrome 3.x &4.x), the Gamma-based VDM was the best common model

using both strategies.

Table 28: CURVE FITTING ACCURACY FOR WEB BROWSERS (ST.1)

 IE Safari

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 1.00 0.12 4906.01 293.35 1.00 0.06 1598.98 0.00

Weibull 1.00 0.12 4903.48 290.82 1.00 0.07 1610.80 11.82

AML 1.00 0.09 4666.23 53.57 0.99 0.09 1716.48 117.49

Normal 1.00 0.08 4612.66 0.00 0.99 0.09 1715.48 116.49

Power-law 0.99 0.12 4901.34 288.68 1.00 0.07 1629.14 30.16

RE 1.00 0.09 4639.14 26.48 0.99 0.10 1750.82 151.84

RQ 1.00 0.13 4952.64 339.98 1.00 0.07 1632.85 33.87

YF 0.99 0.09 4619.17 6.51 1.00 0.08 1667.18 68.20

 Firefox Chrome

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 1.00 0.03 2332.83 3.07 0.47 0.07 2773.10 0.00

Weibull 1.00 0.03 2332.35 2.60 0.43 0.08 2822.16 49.05

AML 0.00 0.05 2606.51 276.76 0.23 0.09 2892.74 119.64

Normal 0.00 0.05 2605.51 275.76 0.20 0.09 2891.74 118.64

Power-law 1.00 0.03 2329.75 0.00 0.24 0.10 2905.96 132.86

RE 0.05 0.04 2496.37 166.61 0.00 0.12 3025.95 252.85

RQ 0.46 0.03 2370.79 41.04 0.34 0.09 2848.45 75.35

YF 1.00 0.03 2334.13 4.38 0.35 0.08 2843.79 70.69

79

Table 29: CURVE FITTING ACCURACY FOR WEB BROWSERS (ST.2)

 IE (5.x &6.x) IE (9.x &10.x)

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 0.42 0.04 2403.89 0.00 0.00 0.03 714.25 81.52

Weibull 0.82 0.04 2405.72 1.83 0.00 0.03 664.79 32.06

AML 0.00 0.06 2581.77 177.88 0.28 0.02 633.73 1.00

Normal 0.00 0.06 2580.77 176.88 0.26 0.02 632.73 0.00

Power-law 0.00 0.06 2648.43 244.54 0.00 0.11 913.15 280.42

RE 0.00 0.08 2752.95 349.06 0.00 0.13 946.00 313.27

RQ 0.00 0.07 2734.52 330.63 0.00 0.12 933.75 301.02

YF 0.00 0.05 2491.38 87.49 0.00 0.03 714.25 81.52

 IE (10.x &11.x) Firefox (0.x , 1.x, 2.x)

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 0.95 0.02 543.12 0.00 0.00 0.08 1710.73 7.76

Weibull 0.65 0.03 551.15 8.04 0.00 0.08 1710.73 7.76

AML 0.85 0.04 598.93 55.81 0.00 0.11 1802.55 99.58

Normal 0.63 0.04 597.93 54.81 0.00 0.11 1801.55 98.58

Power-law 0.00 0.12 769.67 226.56 0.00 0.08 1707.73 4.76

RE 0.00 0.14 796.28 253.16 0.00 0.08 1707.57 4.60

RQ 0.00 0.13 786.27 243.16 0.05 0.08 1706.58 3.60

YF 0.76 0.03 574.28 31.17 0.11 0.08 1702.97 0.00

 Chrome (0.x , 1.x, 2.x) Chrome (3.x , 4.x)

 p-val HH AIC Δi p-val HH AIC Δi

Gamma 0.00 0.04 1026.71 146.40 0.07 0.09 1273.70 0.00

Weibull 0.32 0.02 908.83 28.52 0.05 0.09 1275.41 1.71

AML 0.68 0.03 936.37 56.07 0.00 0.13 1357.99 84.29

Normal 0.68 0.03 935.37 55.07 0.00 0.13 1356.99 83.29

Power-law 0.00 0.22 1444.48 564.17 0.00 0.10 1292.40 18.70

RE 0.00 0.24 1464.31 584.00 0.00 0.11 1322.00 48.30

RQ 0.00 0.24 1462.09 581.78 0.04 0.10 1279.97 6.27

YF 1.00 0.02 880.31 0.00 0.04 0.10 1282.88 9.18

6.5.3 Summary of curve-fitting results

Overall, in terms of curve fitting, considering the OSs (St. 1), the Normal VDM

was selected in two cases out of four. The AML, Weibull, and Gamma-based VDM,

the Power-law, and RQ models were equally best model in one case out of four, while

the RE model was the best model in three cases out of four. When considering the OSs

(St. 2), the AML and Normal-based VDMs, and the YF model each are being selected

as the best model in one case out of four (St. 2). However, for other web browsers, the

results associated with St. 1 and St. 2 differ.

Considering the web browsers (St. 1), the Gamma-based VDM provided the

best fit in three out of four cases, whereas the Weibull and Normal-based VDMs along

80

with the Power-law model were each the best model in one of the cases. However,

considering the web browsers (St. 2), the Gamma-based VDM was selected as the best

model in three out of six cases. The Weibull-based VDM was found the best model in

two cases out of six.

6.6 Prediction Results

6.6.1 Operating systems

Tables 30-31 present the values of AE, AB, and %ΔAE𝑖 for the cases we

analyzed per strategy, respectively. AB can be positive (for overestimation) or negative

(for underestimation), while AE is always positive. We used * to show the models with

p<0.05 and didn’t calculate %ΔAE𝑖 for those models (note: we used “NA” as the

%ΔAE𝑖 value of the models with p<0.05). In each case, the model that has the smallest

value of AE and p>0.05 was selected as having the best prediction capability and is

highlighted in green. In addition, the model/models with %ΔAE𝑖 < 2 were also

selected as the best prediction models, which, show similar prediction capability

compared to the best model (the model/models with %ΔAE𝑖 = 0).

Comparing the grouping strategies in terms of prediction capabilities, only for

Mac (St. 1) and Mac_OS_X (St. 2) and Linux (St. 1) and Linux_Kernel (St. 2), was

there one common best model. In other words, the Gamma-based VDM and the Power-

law model were the best models for IOS, Linux in both strategies, respectively.

However, for other OSs, the results associated with St. 1 and St. 2 differ.

81

Table 30: PREDICTION ACCURACY FOR WEB BROWSERS (ST.1)

 Windows Mac

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.13 0.12 0.167 7.59 0.15 -0.14 0.280 0.00

Weibull 0.13 0.12 0.169 7.72 0.25 -0.25 0.435 10.40

AML 0.05 -0.05 0.103 0.00 0.27 -0.27 0.459 12.57

Normal 0.05 -0.05 0.103 0.00 0.27 -0.27 0.459 12.57

Power-law 0.13 0.12 0.171 7.85 0.36 0.36 0.322 21.40

RE 0.45 0.45 0.531 39.98 0.87 0.87 0.737 72.64

RQ 0.07 0.05 0.094 2.07 0.20 0.20 0.181 5.29

YF 0.08 0.08 0.100 3.01 0.24 -0.24 0.420 9.64

 IOS Linux

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.17 -0.17 0.228 4.13 0.31 -0.31 0.594 18.33

Weibull 0.17 -0.17 0.225 3.91 0.38 -0.38 0.733 25.17

AML 0.25 -0.25 0.390 12.69 0.41 -0.41 0.785 28.00

Normal 0.25 -0.25 0.390 12.69 0.41 -0.41 0.785 28.00

Power-law 0.16 -0.16 0.224 3.87 0.14 -0.08 0.245 1.77

RE 0.20* 0.20 0.226 NA 0.13 0.09 0.107 0.00

RQ 0.27* -0.27 0.388 NA 0.14* -0.04 0.206 NA

YF 0.13 -0.12 0.179 0.00 0.40 -0.40 0.771 27.10

Table 31: PREDICTION ACCURACY FOR OSS (ST.2)

 Windows (Vista & 7) Mac_OS_X

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.14 -0.12 0.252 5.83 0.24 -0.24 0.443 0.40

Weibull 0.17 -0.16 0.313 8.86 0.31 -0.31 0.549 7.56

AML 0.24 -0.24 0.421 15.91 0.32 -0.32 0.559 8.54

Normal 0.24 -0.24 0.421 15.91 0.32 -0.32 0.559 8.54

Power-law 0.08 0.05 0.080 0.00 0.23 0.23 0.197 0.00

RE 0.15 0.15 0.131 6.50 0.55 0.55 0.440 31.42

RQ 0.11 0.10 0.097 2.50 0.23 0.23 0.198 0.04

YF 0.23 -0.23 0.404 14.37 0.31 -0.31 0.552 7.82

 IOS (11.x & 12.x) Linux_Kernel

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.08 0.04 0.099 0.41 0.31 -0.31 0.552 26.96

Weibull 0.08 0.04 0.099 0.45 0.38 -0.38 0.705 33.67

AML 0.07 -0.07 0.084 0.00 0.40 -0.40 0.730 35.28

Normal 0.07 -0.07 0.084 0.00 0.40 -0.40 0.730 35.28

Power-law 0.08 0.04 0.100 0.46 0.04 0.02 0.053 0.00

RE 0.29* 0.29 0.359 NA 0.33 0.33 0.369 28.72

RQ 0.10 0.07 0.129 2.38 0.06* -0.06 0.118 NA

YF 0.13 0.12 0.172 5.91 0.37 -0.37 0.685 32.90

6.6.2 Web browsers

Tables 32-33 present the values of AE, AB, and %ΔAE𝑖 for the four web

browsers (St. 1 and St. 2).

82

Table 32: PREDICTION ACCURACY FOR WEB BROWSERS (ST.1)

 IE Safari

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.20 -0.16 0.364 7.90 0.16 0.16 0.140 5.42

Weibull 0.22 -0.19 0.423 10.17 0.10 0.01 0.131 0.00

AML 0.33 -0.33 0.673 21.31 0.15 -0.14 0.271 4.94

Normal 0.33 -0.33 0.673 21.31 0.15 -0.14 0.271 4.94

Power-law 0.17 -0.09 0.266 4.92 0.43 0.43 0.388 32.61

RE 0.12 0.06 0.104 0.00 1.02 1.02 0.870 91.95

RQ 0.15 -0.05 0.221 3.78 0.29 0.29 0.266 18.74

YF 0.29 -0.29 0.610 17.77 0.12 -0.05 0.187 1.34

 Firefox Chrome

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.05 -0.05 0.049 2.21 0.21 -0.21 0.360 0.00

Weibull 0.05 -0.04 0.049 2.17 0.31 -0.31 0.508 10.13

AML 0.18* -0.18 0.236 NA 0.27 -0.27 0.446 6.22

Normal 0.18* -0.18 0.236 NA 0.27 -0.27 0.446 6.22

Power-law 0.05 -0.04 0.048 2.13 1.00 1.00 0.833 79.27

RE 0.06 0.06 0.086 3.94 2.14* 2.14 1.537 NA

RQ 0.02 0.00 0.031 0.00 0.40 0.40 0.374 19.41

YF 0.07 -0.07 0.079 4.13 0.26 -0.26 0.435 5.12

Table 33: PREDICTION ACCURACY FOR WEB BROWSERS (ST.2)

 IE (5.x &6.x) IE (9.x &10.x)

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.06 0.06 0.065 2.07 0.23* 0.23 0.268 NA

Weibull 0.04 0.03 0.043 0.00 0.17* 0.17 0.192 NA

AML 0.10* -0.10 0.138 NA 0.04 -0.04 0.054 1.80

Normal 0.10* -0.10 0.138 NA 0.04 -0.04 0.054 1.80

Power-law 0.17* 0.17 0.169 NA 0.33* 0.33 0.365 NA

RE 0.27* 0.27 0.260 NA 0.68* 0.68 0.680 NA

RQ 0.23* 0.23 0.218 NA 0.33* 0.33 0.363 NA

YF 0.07* -0.07 0.110 NA 0.03 0.03 0.029 0.00

 IE (10.x &11.x) Firefox (0.x , 1.x, 2.x)

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.06 0.06 0.067 0.85 0.14* -0.14 0.157 NA

Weibull 0.05 -0.05 0.066 0.00 0.14* -0.14 0.157 NA

AML 0.12 -0.12 0.149 6.88 0.24* -0.24 0.280 NA

Normal 0.12 -0.12 0.149 6.88 0.24* -0.24 0.280 NA

Power-law 0.43* 0.43 0.442 NA 0.14* -0.13 0.148 NA

RE 0.86* 0.86 0.811 NA 0.11* -0.10 0.119 NA

RQ 0.41* 0.41 0.424 NA 0.14 -0.14 0.160 2.21

YF 0.09 -0.09 0.114 3.79 0.12 -0.11 0.134 0.00

 Chrome (0.x , 1.x, 2.x) Chrome (3.x , 4.x)

 AE AB HH %ΔAEi AE AB HH %ΔAEi

Gamma 0.12* 0.12 0.175 NA 0.25 -0.25 0.305 0.00

Weibull 0.04 0.04 0.063 2.10 0.27 -0.27 0.329 2.51

AML 0.02 -0.02 0.026 0.17 0.27* -0.27 0.334 NA

Normal 0.02 -0.02 0.026 0.17 0.27* -0.27 0.334 NA

Power-law 0.52* 0.52 0.779 NA 0.04* -0.02 0.052 NA

RE 1.19* 1.19 1.778 NA 0.04* 0.04 0.074 NA

RQ 0.55* 0.55 0.816 NA 0.12* -0.12 0.135 NA

YF 0.02 0.01 0.028 0.00 0.27* -0.27 0.338 NA

83

6.6.3 Summary of prediction results

Overall, in terms of prediction, considering the OSs (St. 1), all the models

except the Weibull-based VDM were selected as the best model in one case out of four.

Considering the OSs (St. 2), the Power-law model was the best one in all four cases.

The Gamma-based VDM was the most accurate in two cases; the other models except

the RE model each were selected as the best model in one case.

Considering the web browsers (St. 1), the Gamma and Weibull-based VDMs

and the RE, YF, and RQ models were each better than other models in one case out of

four. However, considering the web browsers (St. 2), the YF model was most accurate

in three cases out of six. Gamma, Weibull, AML, and Normal-based VDMs are the

best models in two cases.

Please remember that all the conclusions we draw from this research and their

validity are limited by our database uncertainties.

6.7 Discussion

In this section, we take a closer look at our findings and then offer some

guidelines to model vulnerability discovery data with respect to the shape of the

discovery intensity functions.

Tables 34-35 show the summary of the selected models per dataset for curve-

fitting and prediction, respectively. For curve-fitting, the models p-value<0.05 are

highlighted in red. Based upon the results, in terms of curve fitting, out of eight datasets

grouped by Strategy #1 (St. 1), the Gamma-based, Normal-based, Weibull-based,

Power-law, AML and RQ VDMs provided the best (or equally best) fit in four, three,

84

two, two, one, one, cases, respectively. The other models were most accurate in neither

of the cases.

Table 34: SUMMARY OF SELECTED MODELS PER DATASET (CURVE-FITTING)

C
u

rv
e- F

ittin
g

OS Web Browsers

Window

s
Mac IOS Linux IE

Safar

i
Firefox Chrome

S
t.1

S
t.2

S
t.1

S
t.2

S
t.1

S
t.2

S
t.1

S
t.2

S
t.1

5
&

6

9
&

1
0

1
0

&
1

1

S
t.1

S
t.1

0
&

1
&

2

S
t.1

0
&

1
&

2

3
&

4

Gamm

a

Weibu

ll

AML

Norma

l

Power

-law

RE

RQ

YF

Table 35: SUMMARY OF SELECTED MODELS PER DATAS ET (PREDICTION)

P
red

ictio
n

OS Web Browsers

Window

s
Mac IOS Linux IE

Safar

i
Firefox Chrome

S
t.1

S
t.2

S
t.1

S
t.2

S
t.1

S
t.2

S
t.1

S
t.2

S
t.1

5
&

6

9
&

1
0

1
0

&
1

1

S
t.1

S
t.1

0
&

1
&

2

S
t.1

0
&

1
&

2

3
&

4

Gamm

a

Weibu

ll

AML

Norma

l

Power

-law

RE

RQ

YF

In terms of curve fitting, out of ten datasets in St.2, the YF, Gamma-based, and

RE VDMs were most accurate in four, three, and three cases, respectively. The AML,

85

Normal-based, and RQ VDMs each were most accurate in one case. The other models

were most accurate in neither of the cases.

In terms of prediction accuracy, out of eight datasets in St.1, the Gamma-based,

RE, and YF VDMs, each provided the best (or equally best) fit in two cases. The other

models each were most accurate in one case.

In terms of prediction accuracy, out of ten datasets in St.2, the Gamma-based,

Power-law, Weibull-based, AML, Normal-based, and YF VDMs were most accurate

in four, four, three, three, and three cases, respectively. The RQ model was most

accurate in one case.

Based upon our findings we found similar guideline per grouping strategy, in

terms of cure-fitting (the Gamma-based VDM). However, we found different

guidelines, in terms of prediction accuracy. In some cases, we found that the selected

model/models for a software from St. 1 is/are similar to those selected for its

subversions from St. 2. However, it just occurred in few cases. For IOS (curve-fitting),

AML and Normal-based VDMs were the best models in both strategies. For Chrome

(curve-fitting) and one of its subversions (Chrome 3.x & 4.x), the Gamma-based VDM

was the best common model considering both strategies. For Mac (prediction), the

Gamma-based VDM was the most accurate model in both strategies. For Linux

(prediction), the Power-law model was the best model in both strategies.

6.8 Limitations

There are several limitations to our work that prevent us from making more

general conclusions. Part of the limitations we are facing with are common with

previous chapters like the uncertainties associated with vulnerability databases and the

86

way we collect the vulnerability data reported for any version of a software from

different sources and filtering them based upon the earliest date that a given

vulnerability was known in any of these sources (cf. Section 4.7).

In addition, we have only applied the approach to 8 software and their subsets.

We don’t know yet how well this works for other software and vulnerability datasets

associated with them (cf. Section 5.9).

The next limitation is that we assumed the percentage of common

vulnerabilities for two or more consecutive versions of a software would be a good

measure regarding the similarity of their source code (i.e., we grouped the consecutive

versions with more than 70% common reported vulnerabilities). There other factors

which could be considered together with our assumption to improve its validity. For

example, looking at the source code of those versions and finding the number of lines

with similar code. However, collecting such features is only feasible for open-source

software and can’t be applied on private software.

6.9 Summary

In this chapter, we developed some guidelines for analyzing vulnerabilities (i.e.,

those datasets where more vulnerabilities are reported earlier in the product lifecycle)

using two vulnerability grouping strategies. We compared the curve fitting and

prediction capabilities of eight different models: one NHPP Power-law model, two

right-skewed distribution models, one flexible-skewed distribution model, three

symmetric distribution models, and two non S-shaped VDMs. These models were

applied on eighteen datasets that originated from four OSs and four web browsers. The

datasets were built using two strategies for grouping vulnerabilities (vulnerabilities

87

merged for all versions and groups built based on a number of common vulnerabilities

across versions). We found that a model’s ability to provide a good fit does not

necessarily guarantee superior prediction capabilities from the same model.

88

Chapter 7: Vulnerability Prediction Capability: A

Comparison between Vulnerability Discovery Models and

Neural Network Models

7.1 Introduction

In this chapter, we introduce an approach for predicting the total number of

software vulnerabilities and compare the results with those found from aforementioned

VDMs. Our approach uses a neural network model (NNM) to model the nonlinearities

associated with vulnerability disclosure. Eight common VDMs were used to compare

their prediction capability with NNM.

7.2 Motivation

Vulnerability discovery models (VDMs) were developed to predict future

software vulnerabilities based on their historical behavior. Although VDMs are often

accurate in terms of curve fitting, they might not perform well in prediction phase [25].

Indeed, VDMs are often not powerful enough to take the nonlinear nature of

vulnerability disclosure times into consideration. In recent years, some software

vulnerability disclosure process models were developed using traditional time series

models like Auto Regressive Moving Average (ARIMA) [67]. However, vulnerability

disclosure data contain a lot of nonlinearity and thus traditional time series models

might not be appropriate [68]. Pokhrel et al. [69] compared the modeling capability of

linear and nonlinear time series for three OSs (i.e. Windows 7, Mac OS X, and Linux

89

Kernel). They developed models based on ARIMA, Artificial Neural Network (ANN),

and Support Vector Machine (SVM) settings.

In this chapter, we make the following contributions:

- We introduce a nonlinear modeling approach based on neural networks to

model the nonlinearities associated with vulnerability disclosure times and predict the

total number of software vulnerabilities in 30-day time intervals.

- We compare the prediction capability of the neural network model (NNM)

with eight commonly used VDMs. We applied the models to vulnerability data

associated with our aforementioned database consist of four well known operating

systems (OSs) (Windows, Mac, IOS (the OS associated with Cisco), and Linux), as

well as four well-known web browsers (Internet Explorer, Safari, Firefox, and

Chrome).

- We show that the NNM outperforms the VDMs in all the cases in terms of

prediction accuracy, and provides smaller values of absolute average bias in seven

cases.

7.3 Data Processing

We will analyze the reported vulnerabilities associated with four well-known

OSs: Windows (1995-2017), Mac (1997-2017), IOS (the OS associated with Cisco)

(1992-2017), and Linux (1994-2017), as well as four well-known web browsers:

Internet Explorer (1997-2017), Safari (2003-2017), Firefox (2003-2017), and Chrome

(2008-2017). These software have been selected because they are the most widely used

and have the most vulnerabilities in the database. Figures 8 and 9 show the detection

frequency of all vulnerabilities associated with each software over time intervals of 30

90

days for the studied OSs and web browsers, respectively. We also plotted the 180-days

moving average (MOVAVG) for each software to gain a better understanding of

vulnerability detection trend. As is shown, the maximum value of MOVAVG for all

cases occurred after 2015.

As mentioned in Chapter 3, for each software, we analyze all vulnerabilities

reported for any of its versions. Thus, for each software, all the vulnerabilities reported

for any of its versions were included. In addition, regarding our analysis, we divided

the vulnerability dataset associated with each software into two groups: training and

testing. The training data set consists of all the vulnerabilities reported before 2015.

The testing data set consists of vulnerabilities reported in years 2015, 2016, and 2017.

Table 36 represents the total number of vulnerabilities per software, as well as the

number of vulnerabilities in the training and testing phases.

Table 36: NUMBER OF VULNERABILITIES PER SOFTWARE

OS Windows Mac IOS Linux

Total 3100 2705 650 4745

Train 2237 1605 438 2609

Test 863 1100 212 2136

Web Browser IE Safari Firefox Chrome

Total 1775 943 1477 1837

Train 1059 701 1150 1229

Test 716 242 327 608

91

 Histogram of the number of detected vulnerabilities per 30 days together with its 180-days moving

average for the studied OSs. The X-axis represents time (Year). The Y-axis shows the frequency of

discovered vulnerabilities over 30 days time intervals. The blue and red colors show data associated with the

training and test datasets.

 Histogram of the number of detected vulnerabilities per 30 days together with its 180-days moving

average for the studied Web browsers. The X-axis represents time (Year). The Y-axis shows the frequency of

discovered vulnerabilities over 30 days time intervals. The blue and red colors show data associated with the

training and test datasets.

92

7.4 Neural Network Model (NNM)

Neural network models (NNMs) consist of a set of algorithms for modeling and

recognizing patterns. NNMs have been widely used for predicting data with sequential

time series data such as monthly electricity demand of a city or stock price [68], [70],

[71]. Unlike VDMs, NNMs are capable of integrating the nonlinearity that exist in

noisy time series data. In addition, NNMs are not built upon assumptions regarding the

form of the basic model since they are completely data driven models. In other words,

NNMs are flexible nonlinear data driven models with powerful prediction power. Data

driven models are useful for the cases where there is not a theoretical guidance to

explain the data generation process. It has been empirically shown that NNMs are

capable of predicting both linear and nonlinear time series of different forms [72].

To predict the number of discovered vulnerabilities getting over time for a given

software, we use a feedforward NNM, which is the most widely used neural network

[68]. Feedforward NNMs accept a fixed number of inputs at a time and generate one

output. We assume that the number of future vulnerabilities depend on the number of

vulnerabilities disclosed over the past periods (lags).

We use a single hidden-layer NNM for one step-ahead prediction. According

to [73], a single hidden layer NNM is capable of approximating any non-linear function

with arbitrary precision. Figure 10 shows the structure of the NNM used in our study.

Our feedforward NNM consists of three layers called input, hidden, and output. Each

layer is a collection of neurons (nodes) where the connections are governed by the

corresponding weights. Data have been fed through the input layer, and then they pass

93

through the one or more hidden layers, and the final outcome is provided by the output

layer.

 The NNM Architecture Used for Our Study

To predict the present value, several past observations are used. In other words,

the inputs are a p-element subset of the set {𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1}; and 𝑦𝑡 is the output

or the total number of vulnerabilities reported in period t. Equations 25 and 26 show

the formulas associated with the input and output values of the hidden layer,

respectively. For the output layer, the input and output values are represented by

equations 27 and 28, respectively.

𝐼𝑗 = ∑ 𝑤𝑗𝑖 × 𝑦𝑖 + 𝛽𝑗

𝑡−1

𝑖=𝑡−𝑝

 (𝑗 = 1, … , ℎ), (25)

𝑦𝑗 = 𝑓ℎ(𝐼𝑗) (𝑗 = 1, … , ℎ), (26)

94

𝐼𝑜 = ∑ 𝑤𝑜𝑗 × 𝑦𝑗 + 𝛼𝑜

ℎ

𝑗=1

 (𝑜 = 1), (27)

𝑦𝑡 = 𝑓𝑜(𝐼𝑜) (𝑜 = 1), (28)

where I denotes the input; y denotes the output; p and h are the number of input and

hidden layer nodes, respectively; 𝑤𝑗𝑖 represents the connection weights of the input and

hidden layers; and 𝑤𝑜𝑗 denotes the connection weights of the hidden and output layers.

The bias values of the hidden and output layers are respectively shown by 𝛽𝑗 and 𝛼𝑜,

and are always between -1 and 1. 𝑓ℎ and 𝑓𝑜 are the non-linear activation functions

associated with the hidden and the output layers, respectively. As the hidden layer

activation function, we used a hyperbolic tangent function since it is the function that

most widely used [68].

The initial step in designing a NNM is to determine the optimal number of input nodes

(lags) and hidden layer nodes. Based on the literature, there is no systematic approach

[68]; the most common way of identifying the appropriate number of the nodes (input

and hidden) is via trial and error based upon finding the minimum mean square error

(MSE) of the test data [74]. We followed this approach and identified the number of

hidden nodes experimentally for the time series associated with each software. We

evaluated up to 50 hidden nodes for each time series and chose the number of hidden

nodes that minimized the MSE. Regarding the optimal number of inputs (lags), we used

an optimization algorithm and chose the best combination of lags that led to the lowest

MSE. We started with statistically significant lags derived from the process of

evaluating the partial autocorrelation function (PACF) associated with each time series.

95

In time series analysis, PACF gives the linear partial correlation of a time series with

its own lagged values and evaluated [75]. However, we cannot only rely on the lags we

found from the PACF since, in such case, the selection of inputs would be merely based

on the identification of a linear model, while the goal for using NNM is to capture non-

linear correlations, as well. A very good review of existing input selection methods for

NNMs is provided in [76].

The NNM developed was programmed using Matlab R2018a. For each

software, we began our analysis by dividing the vulnerability dataset into two groups;

training and testing. The training dataset consists of all the vulnerabilities reported

before 2015. The testing data set consists of vulnerabilities reported in years 2015,

2016, and 2017. NNM training is a complex nonlinear optimization problem. Thus,

there is the possibility to get trapped in local minima of the error surface. To avoid

getting poor results, the training process should be repeated several times with different

random starting weights and biases [72].

We set the maximum training number equal to 500 epochs. Epoch stands for

the total number of times a given dataset is utilized for training and shows the number

of times the weights in a network were updated [77]. Since model optimization in deep

learning algorithms is done using the gradient decent method [78], it makes sense to

pass the learning dataset through the network multiple times accordingly to update the

weights and achieve a more accurate model, in terms of prediction [77]. We used the

Levenberg-Marquardt (LM) method as our learning function. The activation function

of the hidden and output layers are the tansig and purelin functions, respectively. To

avoid overfitting/over training, for each software, we employed a cross validation

96

method by dividing our training dataset into three subgroups of training data (70%),

validation data (15%), and test data (15%); and checked the validation performance of

the trained network via metrics provided by Matlab Neural Network toolbox such as

gradient decent (gradient threshold=1.00e-4) and maximum number of validation

checks (max_fail=100). These metrics served as stop conditions of the training phase.

Whenever the parameters of the network under training met any of these thresholds,

the training process was stopped. This process avoids the algorithm to be over-trained

and produce overfitted results.

7.5 Analysis

We used the eight VDMs introduced in Chapter 3 and one NNM for the

discovery process of vulnerabilities in four OSs and four web browsers. The VDMs

were fitted to the datasets using a non-linear regression method described in [24].

The analysis of the prediction capability started by dividing the data into two

groups of training and testing data. Both the VDMs and the NNM use a dataset that

includes all vulnerabilities reported for all versions of a given software. The training

period starts from the time when the first vulnerability associated with a given software

was discovered and continues until 12/31/2014. We calculated the predictions for the

years 2015, 2016, and 2017. As it is shown in Figure 8 and Figure 9, the blue and the

red show the data associated with training and testing datasets, respectively. We split

the vulnerability data into intervals of 30 days as is common in the vulnerability

analysis literature [18], [24], [25].

For the VDMs, during the training period, the training data was used to estimate

model parameters. The estimated final values for each 30-day interval produced by the

97

eight models were compared with the actual number of vulnerabilities to calculate the

prediction accuracy. For the NNM, for each software, we used the training data to train

the NNM. Using the trained NNM, we predicted the expected values for the next steps.

The prediction accuracy is based on the comparison between the obtained estimation

and the actual number of vulnerabilities.

For the training part, for VDMs, we applied the Chi-square (χ2) goodness of fit

test to assess how well each model fits the training datasets. For the training part, for

the NNM, out of the models trained with different number of lags, the optimal

analytical model was selected based on the MSE value. Finally, for each software, the

best selected analytical model was used to make the prediction for the testing data set

(the vulnerabilities reported in 2015, 2016, and 2017). In this chapter, regarding the

NNMs, we just reported the results associated with the best NNM.

For the prediction part, we calculated the two normalized predictability

measures, AE, AB. These indicator and their associated equations were introduced in

Chapters 4 and 6. In addition, for the VDMs, we report ΔAE𝑖, which represents the

percentage of difference between the AE of the i-the model and the model with

minimum AE.

7.6 Results

Tables 37- 38 present the values of AE, AB, ΔAE𝑖, and p-value (we used * to

show the models with p<0.05) for the cases we analyzed per model (VDMs and NNM),

respectively. AB can be positive (for overestimation) or negative (for underestimation),

while AE is always positive. In each case, we first found the best VDMs by comparing

their prediction accuracy and then compared the accuracy of those models with the

98

NNM. In other words, for the VDMs, the model that has the smallest value of AE was

selected as having the best prediction capability and is highlighted in yellow. In

addition, the VDMs with ΔAE𝑖 < 2 were also selected as the best VDMs, which, show

similar prediction capability compared to the best model (the model/models with

ΔAE𝑖 = 0). In addition, the normalized error values ((Ω𝑡 − Ω)/Ω) associated with the

OSs and web browsers are plotted in Figure 11 and Figure 12, respectively. As it is

shown, the models with less fluctuations lead to higher accuracy.

Table 37: PREDICTION ACCURACY FOR OSS (VDMS & NNM)

 Windows Mac

 AE AB %ΔAEi p-value AE AB %ΔAEi p-value

Gamma 0.028 0.002 0.000 0.805 0.247 -0.247 20.537 0.817

Weibull 0.036 -0.031 0.776 0.870 0.281 -0.281 24.006 0.437

AML 0.087 -0.087 5.844 0.016* 0.287 -0.287 24.601 0.809

Normal 0.087 -0.087 5.844 0.016* 0.287 -0.287 24.601 0.809

Power-law 0.078 0.078 4.982 0.435 0.062 -0.045 2.066 0.030

RE 0.172 0.172 14.365 0.027* 0.041 0.041 0.000 0.402

RQ 0.075 0.075 4.718 0.579 0.066 -0.049 2.452 0.001*

YF 0.059 -0.057 3.067 0.178 0.279 -0.279 23.751 0.751

NNM 0.015 -0.011 NA NA 0.018 0.010 NA NA

 IOS Linux

 AE AB %ΔAEi p-value AE AB %ΔAEi p-value

Gamma 0.076 -0.076 4.778 0.901 0.277 -0.277 9.302 0.828

Weibull 0.071 -0.071 4.195 0.902 0.272 -0.272 8.791 0.611

AML 0.045 -0.045 1.646 0.890 0.336 -0.336 15.146 0.000*

Normal 0.045 -0.045 1.646 0.890 0.336 -0.336 15.146 0.000*

Power-law 0.070 -0.070 4.173 0.002* 0.246 -0.246 6.204 0.342

RE 0.059 0.045 3.027 0.001* 0.184 -0.184 0.000 0.705

RQ 0.199 -0.199 16.988 0.000* 0.238 -0.238 5.341 0.342

YF 0.029 -0.018 0.000 0.930 0.307 -0.307 12.229 0.569

NNM 0.021 -0.014 NA NA 0.040 -0.034 NA NA

99

 Prediction errors for OSs. The X-axis indicates time (Year). The Y-axis represents normalized

prediction error values ((Ω
𝑡

− Ω)/Ω).

Table 38: PREDICTION ACCURACY FOR WEB BROWSERS (VDMS & NNM)

 IE Safari

 AE AB %ΔAEi p-value AE AB %ΔAEi p-value

Gamma 0.264 -0.264 5.887 0.891 0.165 -0.165 9.391 0.049

Weibull 0.264 -0.264 5.841 0.891 0.216 -0.216 14.474 0.330

AML 0.319 -0.319 11.357 0.009* 0.225 -0.225 15.371 0.330

Normal 0.319 -0.319 11.357 0.009* 0.225 -0.225 15.371 0.330

Power-law 0.264 -0.264 5.820 0.891 0.072 0.072 0.000 0.409

RE 0.206 -0.206 0.000 0.309 0.190 0.190 11.801 0.017*

RQ 0.249 -0.249 4.324 0.590 0.081 0.081 0.976 0.693

YF 0.268 -0.268 6.287 0.309 0.215 -0.215 14.336 0.978

NNM 0.028 0.006 NA NA 0.042 -0.037 NA NA

 Firefox Chrome

 AE AB %ΔAEi p-value AE AB %ΔAEi p-value

Gamma 0.036 0.032 0.123 0.263 0.248 -0.248 0.000 0.890

Weibull 0.036 0.032 0.099 0.263 0.292 -0.292 4.379 0.897

AML 0.088 -0.088 5.304 0.008* 0.270 -0.270 2.174 0.805

Normal 0.088 -0.088 5.304 0.008* 0.270 -0.270 2.174 0.805

Power-law 0.056 0.056 2.089 0.263 0.336 0.336 8.802 0.000*

RE 0.160 0.160 12.452 0.091 0.623 0.623 37.481 0.000*

RQ 0.084 0.084 4.927 0.159 0.120 0.120 NA 0.000*

YF 0.035 -0.034 0.000 0.121 0.269 -0.269 2.146 0.950

NNM 0.030 -0.016 NA NA 0.043 -0.009 NA NA

100

 Prediction errors for web browsers. The X-axis indicates time (Year). The Y-axis represents

normalized prediction error values ((Ω
𝑡

− Ω)/Ω).

Based on the results provided by Tables 37-38, in terms of prediction accuracy

(AE), the NNM led to most accurate results in all of the eight software we analyzed.

To be more precise, for Windows, the NNM’s average error (AE) is 1.3%, and 2.1%

smaller than the AEs associated with the best VDMs, which were Gamma and Weibull-

based VDMs. For Mac, this difference is 2.3%. For IOS, the NNM outperforms the

best VDMs (YF, AML and Normal) by having 0.8%, 2.4%, and 2.4% smaller average

errors, respectively. Linux and IE are two of the cases where the NNM provides far

better predictions than those from VDMs by being 14.4%, and 17.8% more accurate.

The average error of the NNM for Safari is 3% and 3.9% smaller than those from the

best VDMs (Power-law and RQ).

101

For Firefox, the NNM improved the predictions by 0.5%, 0.6%, and 0.6%

compared to YF, Gamma, and Weibull-based VDMs, respectively. For Chrome, the

VDM with smallest is not statistically sound from the training part. So, we opt for the

next VDM with p-value>0.05 and smallest AE, which is Gamma. In this case, the NNM

accuracy improvement is 20.5%. Overall, the highest differences in prediction accuracy

between the NNM and the VDMs were found in Chrome (20.5%), IE (17.8%), Linux

(14.4%), and Safari (3.9%), respectively.

In terms of magnitude of error, out of eight software we analyzed, the NNM

outperformed the VDMs in seven cases by having smaller |AB| values. Only for

Windows, the absolute value of bias provided by one of the selected VDMs was 0.9%

smaller than the one resulted from the NNM. For Mac, IOS, Linux, IE, Safari, Firefox,

and Chrome, the bias magnitudes provided by the NNM were smaller than those from

the best VDMs (in each case, we considered the best VDM, which had smallest |AB|)

by 3.1%, 0.4%, 15%, 20%, 3.5%, 1.6%, and 23.9%, respectively.

Overall, in terms of accuracy, out of the eight cases we analyzed, the NNM

outperformed VDMs in all the cases. Besides, in terms of magnitude of bias, the NNM

led to smallest bias values in seven cases.

Please remember that all the conclusions we draw from this research and their

validity are limited by our database uncertainties.

7.7 Discussion

In terms of prediction accuracy (AE), considering the OSs and web browsers,

the NNM led to more accurate results than the best selected VDMs in all the cases. The

Gamma-based VDM was selected as the best model in three cases out of four. The

102

Weibull and YF VDMs were each best compared with other models in one case out of

four.

In terms of overall magnitude of bias (i.e., absolute value of AB), out of the

eight cases we analyzed, the NNM provided smaller absolute values of bias in seven

cases compared to the best VDMs. Only for Windows, the absolute value of bias

provided by the Gamma-based VDM (0.002) was smaller than the one resulted from

NN (-0.011).

We believe that the final decision, in equal accuracy conditions, in terms of

bias, is up to the researcher to choose the best model based upon his/her priorities.

However, from a security point of view, it is better to choose a model, which provides

more conservative prediction results. In the current study, among the models that were

selected as the best predictors, only two NNMs (Mac and IE) provided overestimated

results. Other selected NNMs underestimated the number of vulnerabilities. It can also

be easily inferred from Figure 11 and Figure 12, where for Mac and IE most of the

prediction points associated with the NNMs are located over the X=0 axis.

We believe that the NNM’s better performance compared to VDMs comes from

the capability of the NNM in predicting the nonlinearity nature of the vulnerability

disclosure time series. In addition, most VDMs consider the vulnerability discovery

process as a pure S-shaped curve or a function with a monotonic intensity function with

constant total number of vulnerabilities. However, the number of vulnerabilities

associated with a given software may change as newer versions are released.

Additionally, VDMs and traditional time-series functions only use one set of

parameters for estimation. On the other hand, NNMs due to having multilayer

103

perceptron structure, having multiple neurons per layer, and using different set of

parameters per neuron provide a more complicated structure for prediction. Of course,

the specific validation method we used to avoid being trapped by overfitting in the

learning phase is another advantage of using NNMs.

7.8 Limitations

There are a few limitations to our work that prevents us from expanding our

conclusions in a more generalized manner. Some of them are common with previous

chapters of this dissertation such as uncertainties associated with vulnerability data

public repositories (cf. Section 4.7).

Another common limitation is with respect to utilizing announced published

date of vulnerabilities as their discovery date. Vulnerabilities normally get identified

before by pernicious users than the time they are officially reported. To ensure that this

gauge is as close as conceivable to the real date the vulnerability is publicly known to

the world, we searched for various vulnerability repositories and selected the earliest

date announced for a vulnerability (cf. Section 4.7).

Another limitation is as to the manner in which we combined all vulnerabilities

announced for all versions of a given software to have sufficient data for training the

models (cf. Section 5.9). While number of studies utilize vulnerability data associated

with separate version of software (e.g. Windows 7) on which to apply VDMs, there are

papers that consider all versions of a software together [25], [62]. The first group

expects that each version of a given software is an independent and all around

characterized item, yet distinguishing the sources of reliance in vulnerability data is not

a simple task.

104

The next limitation is that we only used one machine learning algorithm (Neural

Network) to show the better performance of such algorithms over the commonly used

VDMs. There are several other algorithms like SVMs, which could also be used.

However, since our research question was not associated with comparing the prediction

performance of other machine learning algorithms, we only chose one of them.

7.9 Summary

In this chapter, we compared the capabilities of eight common vulnerability

discovery models (VDMs) with a nonlinear neural network model (NNM) in terms of

predicting the total number of future vulnerabilities over a prediction period of three

years. We applied the mentioned models to vulnerability data associated with four well

known OSs and four well-known web browsers. The models were assessed in terms of

prediction accuracy and prediction bias. The results showed that the NNM

outperformed the VDMs in all the cases in terms of prediction accuracy. In terms of

overall magnitude of bias, out of the eight cases we analyzed, the NNM provided the

smallest absolute values of bias in seven cases compared to the best VDMs. This

chapter shows that neural networks are promising for accurate predictions of the total

number of software vulnerabilities.

105

Chapter 8: Predicting Exploited Vulnerabilities

8.1 Introduction

Exploited vulnerabilities typically form 2-7% of all the vulnerabilities reported

for a given software. With a smaller number of known exploited vulnerabilities

compared with the total number of vulnerabilities, it is more difficult to mathematically

model and predict when a vulnerability with a known exploit will be reported. In this

chapter, we introduce an approach for predicting the total number of publicly-known

exploited vulnerabilities using all publicly-known vulnerabilities reported for a given

software. Eight commonly used VDMs and one NNM were utilized to evaluate the

prediction capability of our approach. We compared their predictions results with the

scenario when only exploited vulnerabilities were used for prediction.

8.2 Motivation

For some vulnerabilities, exploits are never published. This might be because

the patches for these vulnerabilities are made available very quickly by the vendors,

and hence it is not profitable for the crackers to develop exploits for them; the

vulnerabilities have a lower criticality from the security viewpoint; or it might be that

that exploits for these vulnerabilities are only known to the vendors, to security

agencies or are exchanged in, for example, darkweb forums. Whatever the explanation

may be, vulnerabilities with publicly-known exploits usually form only 2-7% of all the

vulnerabilities reported for an specific version of given software [47], [79]. In addition,

as opposed to vulnerability databases such as NVD, which are actively maintained,

106

security repositories reporting exploited vulnerabilities like Exploit Database, also

known as “ExploitDB”, are less common. A comparison between NVD and ExploitDB

finds that only 22% of NVD distinct vulnerabilities have exploits reported and listed in

ExploitDB. On the other hand, vulnerabilities with known exploits are more dangerous

to end users, even if patches may be available, since not all users regularly patch their

systems. For this reason, it is important for both vendors and users to be able to predict

the time to the next vulnerability with a known exploit. However, with a smaller

number of known exploited vulnerabilities compared with the total number of

vulnerabilities, it is difficult to model and predict when a vulnerability with a known

exploit will be reported. Specifically, the data scarcity makes it difficult to use data

driven models, which are helpful where there is no theoretical guidance to explain the

data generation process, for such data [80]. Therefore, we postulate that it is a

worthwhile research activity to explore whether there is a link between disclosure times

of all vulnerabilities reported for a given software and discovery times of its exploited

vulnerabilities. Finding such link would allow to use a larger dataset of all

vulnerabilities for predicting the time when vulnerabilities with exploits will be

reported.

To the best of our knowledge, there is no research focusing on modeling

exploited vulnerabilities. The only efforts in this area is probabilistic examination of

intrusions by [52], [53]. Lack of data is a big barrier on the way to modeling exploited

vulnerabilities using current VDMs or the machine learning techniques, which require

considerable amount of data for satisfactory training.

107

In this chapter, we introduce an approach for predicting the total number of

publicly-known exploited vulnerabilities using all vulnerabilities reported for a given

software. Eight commonly used VDMs as well as one NNM were used to evaluate the

prediction capability of our approach. We applied the models to vulnerability data

associated with four well-known OSs (Windows, Mac, IOS (the OS associated with

Cisco), and Linux), as well as four well-known web browsers (Internet Explorer, Safari,

Firefox, and Chrome).

Our work makes the following contributions:

- We introduce an approach for predicting total number of publicly-known

exploited vulnerabilities using all vulnerabilities reported for a given

software;

- We compare the prediction capability of two scenarios S1 and S2, S1 when

all the vulnerabilities are considered, S2 when only exploited vulnerabilities

are, utilizing eight VDMs and one NNM on eight well-known software;

- We show that, out of eight software we analyzed, scenario S1 outperforms

scenario S2 in seven cases in terms of prediction accuracy. Only in one case,

the prediction of S1 was worse than S2 by 1.5%. In other words, for most

of the cases analyzed, we show that using all the vulnerability data available

for a system allows to better predict when vulnerabilities that will have

publicly-known exploits for them will be reported

8.3 Data Processing

We will analyze the reported vulnerabilities associated with four well-known

OSs: Windows (1995-2017), Mac (1997-2017), IOS (the OS associated with Cisco)

108

(1992-2017), and Linux (1994-2017), as well as four well-known web browsers:

Internet Explorer (1997-2017), Safari (2003-2017), Firefox (2003-2017), and Chrome

(2008-2017). These software have been selected because they are the most widely used

and have the most vulnerabilities in the database.

For each software, all the vulnerabilities reported for any of its versions were

included. For instance, all the vulnerabilities reported for mac_os, mac_os_server,

mac_os_x, and mac_os_x_server were put together to create a vulnerability database

for Mac.

Two scenarios were considered. In the first scenario (S1), we analyze all

vulnerabilities reported for a software for any of its versions. In the second scenario

(S2), for each software, we only consider the exploited vulnerabilities.

Table 39 presents the total number of vulnerabilities for each software (All

vulnerabilities together (”S1”) and only exploited vulnerabilities (“S2”)). The

percentages of exploited/unexploited vulnerabilities per software are presented in

Figure 13. Windows and IE had the most percentages of exploited vulnerabilities with

24.13% and 22.65%, respectively.

Table 39: NUMBER OF VULNERABILITIES PER SOFTWARE (ALL VS. EXPLOITED)

OS Windows Mac IOS Linux

All

Vulnerabilities
3100 2705 650 4745

Exploited

Vulnerabilities
748 282 27 481

Web Browser IE Safari Firefox Chrome

All

Vulnerabilities
1775 943 1477 1837

Exploited

Vulnerabilities
402 108 100 78

109

 Percentage of exploited vulnerabilities per software

8.4 Analytical steps of scenario S1

8.4.1 For the VDMs

In this section, we explain the approach we developed to predict the number of

publicly-reported exploited vulnerabilities associated with a given software using all

vulnerabilities reported for the software. Regarding VDMs, we need to find a

relationship between the discovery pattern of all vulnerabilities (S1) and those

vulnerabilities that were exploited (S2). We focused on the ratio of the time to next

vulnerability (TTNV) for exploited vulnerabilities over the TTNV associated with all

vulnerabilities. We use this ratio as a multiplier in the equations associated the VDMs

in the training phase to approximate the VDMs’ equations for exploited vulnerabilities.

We use a resampling method and a filtering method to take care of the noisy nature of

vulnerability data [81], [82]. For each software, we resample/split the vulnerability data

(all vulnerabilities & exploited vulnerabilities) into intervals of 120, 150, 180, 210, 240,

270, 300, 330, 360 days to remove the effect of daily fluctuations. For each interval (i-

th interval), we calculate the mean TTNV of the observations at each time step

(MTTNV) and calculate the ratio of MTTNVs, Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(t) = MTTNV𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑(𝑡)/

110

MTTNV𝐴𝑙𝑙(𝑡). Figures 14 and 15 show the box plot of ratios associated with each interval

per software. The median of the ratios for each software, 𝑀𝑒𝑑𝑖𝑎𝑛 (Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(𝑡)) is

almost constant over different intervals. The median values of the ratios per software

are presented in Table 40. The VDM for exploited vulnerabilities is calculated as

follows:

Ω(𝑡)𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑 = Ω(𝑡)𝐴𝑙𝑙/𝑀𝑒𝑑𝑖𝑎𝑛 (Ratio𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑖(𝑡)) (5)

 Box chart for TTNV coefficient ratio per OS (S2/S1)

111

 Box chart for TTNV coefficient ratio per web browser (S2/S1)

Table 40: TABLE OF TTVN MEAN RATIOS PER SOFTWARE

OS Windows Mac IOS Linux

TTNV Ratio

(Median)
3.526 9.393 5.696 5.306

Web Browser IE Safari Firefox Chrome

TTNV Ratio

(Median)
3.360 5.792 10.917 50.127

8.4.2 For the NNM

Regarding the NNM, since we want to link two time series, we feed one time

series (all vulnerabilities) into the NNM as input and select the output (𝑦𝑡) from the

second time series (exploited vulnerabilities). In other words, the vector of inputs

{𝑦𝑡−𝑝, . . . , 𝑦𝑡−2, 𝑦𝑡−1} belongs to S1 and the output is chosen from S2. Details on how

the NNM was developed are in chapter 7.

112

8.5 Analysis

For both scenarios (S1 and S2), we used the eight VDMs for the discovery

process of vulnerabilities on eight well-known software (four OSs and four web

browsers). The VDMs were fitted to the datasets using a non-linear regression method

described in [24]. In addition, for the first scenario (S1) we also used one NNM, which

is capable of modeling nonlinearities. Since the NNM is a data driven model, we could

not use it for scenario S2 due to lack of exploited vulnerabilities.

We started the analysis by splitting the data into two groups of training and

testing data. For scenario S1, both the VDMs and the NNM use a dataset that includes

all vulnerabilities reported for all versions of a given software. For scenario S2, the

VDMs use the data associated with exploited vulnerabilities reported for those

versions. The training period for both scenarios starts from the time when the first

exploited vulnerability associated with a given software was reported and continues

until 12/31/2014. We made the predictions for the years 2015, 2016, and 2017. We then

split the vulnerability data into intervals of 30 days as is common in the vulnerability

analysis literature [18], [24], [25].

For scenario S1, for the VDMs, during the training period, the training data was

used to estimate model parameters. Using the estimated parameters and the TTNV

ratios we found from Section 8.4.1, we estimated the number of exploited

vulnerabilities. Then, the estimations for each 30-day interval produced by the eight

models were compared with the actual number of exploited vulnerabilities to calculate

the prediction accuracy. For the NNM, for each software, we used the training data to

train the NNM. The process is like feeding the NNM by one time series and comparing

113

the outputs with values associated with another time series. Using the trained NNM,

we predicted the number of exploited vulnerabilities for the next steps. We calculated

the prediction accuracy by comparing the obtained estimation and the actual number of

exploited vulnerabilities.

For scenario S2, for the VDMs, during the training period, the training data was

used to estimate model parameters. The estimated final values for each 30-day interval

produced by the eight models were compared with the actual number of exploited

vulnerabilities to calculate the prediction accuracy.

The Chi-square (χ2) goodness of fit test [24] was utilized for evaluating the

quality of fit of each model on training datasets. For the training part, for the NNM, we

used the MSE value to select the optimal analytical model, out of the models trained

with different combinations of lags. Then, for each software, the best model was

selected to make the prediction for the testing data set (the vulnerabilities reported in

2015, 2016, and 2017). In this chapter, regarding the NNMs, we report the results

associated with the best NNM.

For the prediction part, we calculated the two normalized predictability

measures, AE, AB. These indicators and their associated equations were introduced in

Chapters 4 and 6. For the VDMs associated with each scenario, we also report ΔVAE𝑖
𝑘,

which shows the difference between the AE of the i-the VDM and the VDM with

minimum AE in the scenario to choose the best VDM(s) for each scenario.

%ΔVAE𝑖
𝑘 = (VAE𝑖

𝑘 − VAE𝑚𝑖𝑛
𝑘) ∗ 100 (29)

114

where k is the k-th scenario, VAE𝑖 is the AE of the i-th VDM, and VAE𝑚𝑖𝑛 is the lowest

AE found in the set of VDMs examined in the scenario (i.e., the best model). Thus, the

ΔVAE𝑖
𝑘 of the best VDM in a scenario is 0.

To highlight the difference between the AE of the k-th model and the overall

best model in both scenarios, we report ΔAE𝑖
𝐺, which is defined as follows:

%ΔAE𝑗
𝐺 = (AE𝑗 − AE𝑚𝑖𝑛

𝐺) ∗ 100 (30)

where AE𝑗 is the AE of the j-th model, and AE𝑚𝑖𝑛
𝐺 is the lowest AE found in the set of

models examined (i.e., the best model). Thus, ΔAE𝑗
𝐺 of the best overall model is 0. In

addition, if for a given model we have ΔAE𝑗
𝐺 = 1.2 , it means than the model has 1.2%

higher prediction error than the best overall model.

8.6 Results

Tables 41-42 present the values of AE, AB, ΔVAE𝑖
𝑘, and ΔAE𝑗

𝐺 for the cases we

analyzed per scenario per model (VDMs and NNM), respectively. Regarding p-values,

we used * to show the models with p<0.05. AB can be positive (for overestimation) or

negative (for underestimation), while AE is always positive. In each case, we first

found the best VDM(s) per scenario by comparing their prediction accuracy and then

compared the accuracy of those models with the NNM results. In other words, for each

software, for the VDMs associated with each scenario, the models that had the smallest

values of AE were selected as the best VDMs in terms of prediction and were

highlighted in yellow. In addition, the VDMs with ΔVAE𝑖
𝑘 < 2 were also selected as

115

the best VDMs, which we assume, show similar prediction capability compared to the

best VDM (the VDM(s) with ΔVAE𝑖
𝑘 = 0). For each software, the best overall model

in both scenarios is colored in green (the model with ΔAE𝑗
𝐺 = 0). If a VDM is the best

model of a scenario and simultaneously is the best overall model, is only colored in

green.

For each software, the normalized error values ((Ω𝑡 − Ω)/Ω) over prediction

time are plotted in Figure 16 and Figure 17. The models with less fluctuations lead to

higher accuracy.

116

Table 41: PREDICTION ACCURACY FOR OSS PER SCENARIO (VDMS & NNM)

Windows S1 S2

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.187 0.187 8.126 12.111 0.101 -0.097 1.703 3.539

Weibull 0.148 0.148 4.245 8.230 0.139 -0.139 5.432 7.268

AML 0.106 0.083 0.000 3.984 0.145 -0.145 6.021 7.856

Normal 0.106 0.083 0.000 3.984 0.145 -0.145 6.021 7.856

Power-law 0.277 0.277 17.076 21.061 0.084 0.084 0.000 1.836

RE 0.387 0.387 28.122 32.106 0.138* 0.138 NS NS

RQ 0.274 0.274 16.766 20.750 0.113 0.113 2.892 4.727

YF 0.122 0.118 1.576 5.560 0.140 -0.140 5.579 7.415

NNM 0.066 -0.024 NA 0.000 NA NA NA NA

Mac S1 S2

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.215 -0.215 14.203 14.985 0.261 -0.261 0.000 19.599

Weibull 0.251 -0.251 17.772 18.553 0.282 -0.282 2.038 21.637

AML 0.257 -0.257 18.399 19.180 0.277 -0.277 1.577 21.177

Normal 0.257 -0.257 18.399 19.180 0.277 -0.277 1.577 21.177

Power-law 0.073 -0.008 0.000 0.781 0.101* -0.008 NS NS

RE 0.081* 0.081 NS NS 0.092* 0.005 NS NS

RQ 0.077 -0.011 0.341 1.122 0.094* 0.017 NS NS

YF 0.248 -0.248 17.513 18.295 0.280 -0.280 1.834 21.433

NNM 0.065 0.026 NA 0.000 NA NA NA NA

IOS S1 S2

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.149 0.146 10.441 13.206 0.032 0.018 0.445 1.524

Weibull 0.156 0.154 11.126 13.891 0.029 0.001 0.182 1.260

AML 0.185 0.185 14.066 16.831 0.028 -0.014 0.000 1.079

Normal 0.185 0.185 14.066 16.831 0.028 -0.014 0.000 1.079

Power-law 0.156 0.154 11.153 13.918 0.240* 0.240 NS NS

RE 0.301 0.301 25.647 28.412 0.279* 0.279 NS NS

RQ 0.044 -0.007 0.000 2.765 0.153* 0.153 NS NS

YF 0.220 0.220 17.555 20.321 0.028 -0.014 0.080 1.158

NNM 0.017 -0.002 NA 0.000 NA NA NA NA

Linux S1 S2

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.132 0.132 8.919 11.140 0.116 -0.116 7.620 9.542

Weibull 0.140 0.140 9.732 11.954 0.128 -0.128 8.874 10.796

AML 0.043 0.037 0.000 2.221 0.168 -0.168 12.811 14.733

Normal 0.043 0.037 0.000 2.221 0.168 -0.168 12.811 14.733

Power-law 0.182 0.182 13.914 16.135 0.040 0.040 0.000 1.922

RE 0.282 0.282 23.969 26.190 0.045 0.045 0.540 2.462

RQ 0.196 0.196 15.291 17.513 0.050 0.050 1.031 2.953

YF 0.084 0.084 4.135 6.356 0.158 -0.158 11.843 13.765

NNM 0.020 0.019 NA 0.000 NA NA NA NA

117

OS S1 S2

W
in

d
o

w
s

M
a

c

IO
S

L
in

u
x

 Prediction errors for Oss per scenario. The X-axis indicates time (Year). The Y-axis represents

normalized prediction error values ((Ω
𝑡

− Ω)/Ω).

118

Table 42: PREDICTION ACCURACY FOR WEB BROWSERS PER SCENARIO (VDMS & NNM)

IE S1 S2

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.121 -0.121 7.189 9.018 0.175 -0.175 11.004 14.475

Weibull 0.120 -0.120 7.138 8.967 0.182 -0.182 11.700 15.170

AML 0.188 -0.188 13.922 15.752 0.256 -0.256 19.048 22.519

Normal 0.188 -0.188 13.922 15.752 0.256 -0.256 19.048 22.519

Power-law 0.120 -0.120 7.113 8.942 0.087 -0.087 2.172 5.643

RE 0.049 -0.049 0.000 1.829 0.065 -0.065 0.000 3.471

RQ 0.102 -0.102 5.292 7.121 0.069 -0.069 0.386 3.856

YF 0.126 -0.126 7.717 9.547 0.228 -0.228 16.253 19.724

NNM 0.030 0.010 NA 0.000 NA NA NA NA

Safari S1 S1

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.498 -0.498 20.921 41.101 0.140 -0.076 1.386 5.308

Weibull 0.528 -0.528 23.943 44.123 0.126 -0.106 0.000 3.923

AML 0.533 -0.533 24.492 44.672 0.131 -0.095 0.500 4.423

Normal 0.533 -0.533 24.492 44.672 0.131 -0.095 0.500 4.423

Power-law 0.357 -0.357 6.898 27.078 0.285 0.224 15.963 19.886

RE 0.288 -0.288 0.000 20.181 0.265 0.193 13.924 17.847

RQ 0.351 -0.351 6.312 26.493 0.270 0.202 14.462 18.384

YF 0.527 -0.527 23.863 44.043 0.127 -0.104 0.101 4.024

NNM 0.087 0.042 NA 0.000 NA NA NA NA

Firefox S1 S1

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.324 0.324 15.768 31.419 0.010 0.005 0.000 0.000

Weibull 0.324 0.324 15.743 31.394 0.029 -0.029 1.912 1.912

AML 0.167 0.167 0.000 15.651 0.064 -0.064 5.344 5.344

Normal 0.167 0.167 0.000 15.651 0.064 -0.064 5.344 5.344

Power-law 0.355 0.355 18.888 34.539 0.209* 0.209 NS NS

RE 0.492 0.492 32.510 48.162 0.199* 0.199 NS NS

RQ 0.393 0.393 22.610 38.261 0.170* 0.170 NS NS

YF 0.238 0.238 7.097 22.748 0.064 -0.064 5.370 5.370

NNM 0.026 -0.024 NA 1.594 NA NA NA NA

Chrome S1 S1

 AE AB %𝜟𝑨𝑬𝒊
𝟏 %𝜟𝑨𝑬𝒋

𝑮 AE AB %𝜟𝑨𝑬𝒊
𝟐 %𝜟𝑨𝑬𝒋

𝑮

Gamma 0.531 -0.531 0.000 35.283 0.363 -0.363 9.162 18.482

Weibull 0.557 -0.557 2.635 37.918 0.359 -0.359 8.724 18.045

AML 0.544 -0.544 1.324 36.606 0.409 -0.409 13.722 23.043

Normal 0.544 -0.544 1.324 36.606 0.409 -0.409 13.722 23.043

Power-law 0.210* -0.204 NS NS 0.285 -0.231 1.404 10.725

RE 0.108* -0.052 NS NS 0.271 -0.148 0.000 9.321

RQ 0.325* -0.325 NS NS 0.330 -0.328 5.831 15.152

YF 0.544 -0.544 1.275 36.557 0.473* -0.473 NS NS

NNM 0.178 -0.157 NA 0.000 NA NA NA NA

119

OS S1 S2

IE

S
a

fa
ri

F
ir

ef
o

x

C
h

ro
m

e

 Prediction errors for web browsers per scenario. The X-axis indicates time (Year). The Y-axis

represents normalized prediction error values ((Ω
𝑡

− Ω)/Ω).

120

Based upon the results provided by Tables 41-42, in terms of prediction

accuracy (AE and HH), out of eight software we analyzed, scenario S1 led to the most

accurate results in seven cases. Only for Firefox, the best VDM from scenario S2 was

more accurate than the best model of scenario S1, which is NNM. In addition,

considering both scenarios, the NNM was selected as the best prediction model in seven

cases. As mentioned before, the VDMs with the * superscript are the models that had

a p-value less than 0.5 and will not be considered in our analysis. In Tables 41-42, we

used the term “NS” for these models, which stands for Not Satisfactory.

For Windows, the best model from scenario S1, which is NNM (ΔAE𝑗
𝐺 = 0), is

1.8% more accurate than the one from scenario S2 (the model with smallest AE in

scenario S2, ΔAE𝑗
𝐺 = 1.836). For Mac, the best model is also NNM by having 19.59%

smaller average prediction error (AE) than the best model from scenario S2. For IOS,

Linux, IE, Safari, and Chrome the stories are like what happened for Windows and Mac

by NNM (from S1) as being the best model, which comes up with 1.1%, 1.9%, 3.5%,

3.9%, and 9.3% smaller prediction errors than the best models from scenario S2. For

Firefox, the model with smallest AE (ΔAE𝑗
𝐺 = 0) belongs to scenario S2 by having

1.6% smaller AE than the best model from scenario S1, which is NNM (ΔAE𝑗
𝐺 ≈ 1.6).

Overall, scenario S1 provides more accurate results in seven cases (out of eight cases)

for the number of future exploited vulnerabilities. In the only case that the best model

from scenario S2 provided most accurate predictions, the performance of the best

model from scenario S1 was only 1.6% worse.

To evaluate the performance of our approach among VDMs, we also need to

compare the results we found only from VDMs. Considering only VDMs, in terms of

121

prediction accuracy (AE and HH), out of eight software we analyzed, scenario S1 led

to most accurate results in only two cases. In other words, for Mac, and IE, the best

VDM from S1 had higher accuracy than the best VDM from scenario S2 by having

18.8%, and 1.6% smaller prediction errors, respectively. However, the VDMs from

scenario S1 were less than 2.2% different in prediction error in three cases compared

to the best VDM from scenario S2. The error differences for Windows, IOS, and Linux

are 2.2%, 1.6%, and 0.3%, respectively. Only for Safari, Firefox, and Chrome this

difference is high and the best VDM from scenario S2 outperformed the best VDM

from scenario S1 by having 16.2%, 15.7%, and 26% smaller prediction error,

respectively. Overall, comparing only VDMs, scenario S1 was able to perform better

than or as well as scenario S2 (with less than 2.2% error difference) in five cases.

Another important factor, which plays a role in model selection is the tendency

of a given model to overestimate or underestimate the results. In this research, we

provided the average bias values (AB) as well as the visual fluctuation trend of

normalized prediction errors (Figure 16 and Figure 17).

Now, for each software, we compare the best overall model and the models of

similar prediction power (those with ΔAE𝑗
𝐺 ≤ 2), in terms of average bias. For a given

software, if there are multiple models that satisfy the mentioned condition, we consider

the model with lowest AB. There are five software, which are qualified for this

condition (i.e. Mac, IOS, Linux, IE, and Firefox). For Linux, IE, and Firefox, the

absolute value of AB for the best overall model was smaller than the other candidates

with ΔAE𝑗
𝐺 ≤ 2 by 2.1%, 3.9%, and 1.9%, respectively. This For Mac and IOS, the best

overall model has higher absolute bias by 1.8%, and 0.1% difference, respectively.

122

However, in terms of bias, the final decision is depend on researcher’s priorities to

select the best model.

8.6.1 Summary of Results

In terms of prediction accuracy (AE and HH), considering the OSs and web

browsers (eight cases), our presented approach led to more accurate results in seven

cases. Out of those cases, the NNM provided the best model in all the cases. Comparing

only VDMs, in terms of prediction accuracy, scenario S1 was able to perform better

than or as well as scenario S2 (with less than 2.2% error difference) in five cases.

Please remember that all the conclusions we draw from this research and their

validity are limited by our database uncertainties.

8.7 Discussion

We believe that the NNM's better execution contrasted with VDMs originates

from the capacity of the NNM in foreseeing the nonlinearity nature of the vulnerability

discovery process as a time series. Moreover, a common assumption in most VDMs is

the pure S-shaped curve for vulnerability discovery process or considering a discovery

function with a monotonic disclosure rate with constant total number of vulnerabilities.

However, in practice, the vulnerability discovery process of a given software may have

several linear and saturation phases as the total number of vulnerabilities may change

as the result of introducing newer software versions. Furthermore, VDMs and

traditional time-series functions only have one set of parameters for estimation. NNMs

due to having multilayer perceptron structure, having various neurons per layer, and

123

utilizing diverse arrangement of parameters per neuron yield a structure with higher

complexity for prediction.

In terms of overall magnitude of bias (i.e., absolute value of AB), out of the

seven cases that scenario S1 performed better, the best model from scenario S1

outperformed the best VDMs from scenario S2 (those with ΔAE𝑗
𝐺 ≤ 2) in five cases.

We believe that, in equivalent precision conditions, in terms of bias, the final

decision is up to the specialist to pick the best model dependent on his/her priorities.

Be that as it may, from a security perspective, it is better to pick a model, which gives

more conservative results, in terms of prediction accuracy. In the current study, out of

the seven NNMs that were chosen as the best models, the AB value in three cases

(Windows, IOS, and Chrome) is negative. In other words, in these cases, the predictor

underestimated the results. It can also be easily inferred from Figure 16 and Figure 17,

where for Windows, IOS, and Chrome most of the prediction points associated with

the NNMs are located under the X=0 axis. For rest of the cases, the best overall model

has come up with positive ABs or conservative results.

8.8 Limitations

There are a few limitations to our work that prevents us from expanding our

conclusions in a more generalized manner. Like previous chapters, there are some

common limitations, as well. One of which is using announced published date of

vulnerabilities as their discovery date (cf. Section 4.7). Another limitation is associated

with the uncertainties of vulnerability databases and the way in which we combined all

vulnerabilities reported for all versions of a given software to have sufficient data for

124

training the models. However this limitation does not only apply to our research and

was employed by other researches, as well (cf. Section 4.7).

Another limitation is with regard to the availability of public information for

exploits. Many vendors and public repositories, with good reason, may not publish

information on exploits as that is likely to increase the security risks for the end users

of those systems. Responsible hackers are also more likely to not publish their exploits

in public fora, as they can report them to the vendors directly. Malicious hackers are

more likely to attempt to monetize their discoveries via dark web fora. Hence the

predictions we make of publicly known exploits are likely to be underestimates of the

true number of all vulnerabilities with exploits. Nevertheless, the approach we describe

in this dissertation can be used by vendors and organization who have more information

about exploits that they cannot share publicly to calibrate their predictions.

8.9 Summary

In this chapter, we evaluated the capability of all vulnerabilities associated with

a software in predicting the number exploited ones. We compared two scenarios: S1

(use of all vulnerabilities) and S2 (use only of exploited vulnerabilities). We used eight

common vulnerability discovery models (VDMs) for both scenarios as well as a non-

linear neural network model (NNM) for the first scenario. Due to insufficient number

of exploited vulnerabilities, it was not conceivable to use NNM for the second scenario.

We used the aforementioned models for predicting the total number of future

vulnerabilities over a prediction period of three years. The mentioned models were

applied to vulnerability data associated with four well-known OSs and four well-known

web browsers. We evaluated the models in terms of prediction accuracy and prediction

125

bias. The results showed that, out of eight software we analyzed, the first scenario led

to more accurate results in seven cases. Moreover, out of these seven cases, the NNM

was chose as the best model in all the cases. Comparing only VDMs, in terms of

prediction accuracy, the first scenario was able to acceptably approximate the results

from the second scenario in five cases (by performing better in two cases and providing

less than 2.2% error difference in three cases). This is good since, we do not always

have access to exploited vulnerability data, which are scarce, and need to predict their

report time based on other publicly accessible information.

126

Chapter 9: Proposed Future Work and Summary of

Completed Work

9.1 Introduction

Organizations face the issue of how to best allocate their security resources.

Thus, they need an accurate method for assessing how many new vulnerabilities will

be reported for the software they use in a given time period. Vulnerabilities reports of

software systems are widely used by security researchers for security analysis (e.g.

software reliability analysis). Researchers have used data from various vulnerability

databases to study trends of discovery of new vulnerabilities, proposed various models

for fitting the discovery times and predicting when new vulnerabilities may be

discovered for a given product. Estimating the discovery times for new vulnerabilities

is useful both for vendors of these products as well as the end-users as it can help them

with their resource allocation strategies over time.

This chapter concludes this dissertation with a summary of the research

questions and contributions (9.2), a summary of published work (9.3), and areas of

future work (9.4).

9.2 Summary of the research questions and contributions

9.2.1 Summary of dissertation and research questions

Among the research conducted on vulnerability modeling, few studies have

tried to provide a guideline about which model should be used in a given situation. In

addition, to the best of our knowledge, there is no research focusing on modeling

127

exploited vulnerabilities. The only efforts in this area is probabilistic examination of

intrusions by [52], [53]. Lack of data is a big barrier on the way to modeling exploited

vulnerabilities using current VDMs or the machine learning techniques, which require

considerable amount of data for satisfactory training. In other words, assuming the

vulnerability data for a software is given, the research questions are the following:

RQ1: What models are more accurate for vulnerability discovery process

modeling? Should all models be applied every time a new dataset is provided?

RQ2: Is there any feature in the vulnerability data could be used as a feature for

identifying the most appropriate models for that dataset?

RQ3: Can we predict disclosure of exploited vulnerabilities having few number

of data points? Is there any way we could apply machine learning algorithms to predict

exploited vulnerabilities?

RQ4: Is the any link between discovery pattern of all vulnerabilities associated

with a given software and its exploited vulnerabilities?

9.2.2 Summary of contributions

The goal of this dissertation is to propose a guideline to characterize the

vulnerability discovery process using several common software

reliability/vulnerability discovery models, also known as Software Reliability Models

(SRMs)/Vulnerability Discovery Models (VDMs) a commonly used machine learning

technique called Neural Networks. The proposed guideline covers the different aspects

of vulnerability modeling including curve fitting and prediction. The data used in this

research has been collected from six different public repositories of vulnerability data

128

sources including the National Vulnerability Database (NVD)15, the Common

Vulnerabilities and Exposures (CVE) database16, the CVE Details data source17, the

Security database18, the SecurityFocus data source19, and the CXSecurity database20.

The contributions of this dissertation are as follows:

 A new guideline to characterize the vulnerability discovery process has

been presented using eight common SRMs/VDMs. The proposed

guideline covers vulnerability discovery modeling curve fitting and

prediction.

 Two strategies to improve curve fitting and prediction accuracy have

been considered.

 The effect of employing a data manipulation technique (i.e. clustering)

on improving the curve fitting and prediction capabilities of the current

SRMs/VDMs has been investigated.

 The analysis has been implemented to two groups: operating systems

(OSs), web browsers, and vendors. More specifically, we selected four

OSs (Windows, Mac, IOS, and Linux), four web browsers (Internet

Explorer, Safari, Firefox, and Chrome).

 We discussed the effect of another data manipulation technique

(vulnerability grouping) on prediction capabilities of the VDMs

15 https://nvd.nist.gov
16 https://cve.mitre.org
17 https://cvedetails.com/
18 https://www.security-database.com/
19 http://www.securityfocus.com/
20 https://securityfocus.com/

129

 Our proposed guideline was expanded by applying the mentioned

models to only the vulnerabilities in NVD that have been exploited

since it is necessary for vendors to identify the vulnerabilities at risk of

being exploited, and to find those with the potential of having rapidly

an exploit.

 We presented a new modeling approach using neural networks and

evaluate its prediction capability versus VDMs. The proposed approach

provides higher curve fitting and prediction capabilities than current

SRMs/VDMs.

 A new approach was introduced for modeling and predicting the total

number of publicly-known exploited vulnerabilities using all publicly-

known vulnerabilities reported for a given software. The proposed

approach has higher curve fitting and prediction capabilities than

current SRMs/VDMs.

This dissertation would contribute to the ‘science of software reliability analysis’

and present a new guideline for vulnerability risk assessment that could be integrated as

part of security tools, such as Security Information and Event Management (SIEM)

systems.

9.3 Summary of Published Work

9.3.1 Published work

A conference paper related to the research presented in this manuscript has been

published. The paper, titled Cluster-based Vulnerability Assessment Applied on

130

Operating Systems was presented at the Dependable Computing Conference (EDCC)

in September 2017 [58], investigated how cluster-based approach can improve the

prediction capability of the NHPP Power-Law model in vulnerability discovery

modeling of operating systems. This paper was elected as the distinguished paper of

the conference.

One journal paper related to the research presented in Chapter 5 of this

dissertation was published in September 2018. The paper, titled Cluster-based

Vulnerability Assessment of Operating Systems and Web Browsers, published in

Computing Journal, is an extend version of [83].

A conference paper, not included in this dissertation research, was presented at

the Dependable Computing Conference (EDCC) in September 2017. The paper, titled

Application of Routine Activity Theory to Cyber Intrusion Location and Time [84],

explored the applicability of criminological theories to cybercriminals in an attempt to

learn more about attacker behavior. The daily patterns of attack attempts on a network,

recorded over a period of four years, were examined to identify periods of higher

intrusion volume.

9.3.2 Additional completed work

A conference paper, titled An Empirical Comparison of Grouping Strategies of

Vulnerabilities for Modeling Vulnerability Discovery Processes, will be submitted in

April 2019 to the Dependable Computing Conference (EDCC) 2019. This paper

corresponds to Chapter 6 of this thesis.

One journal paper, titled Vulnerability Prediction Capability: A Comparison

between Vulnerability Discovery Models and Neural Network Models, will be

131

submitted in Summer 2019 to the Computers & Security journal. This paper

corresponds to Chapter 7 of this dissertation.

One journal paper related to the research presented in Chapter 6 of this

dissertation will be submitted in Summer 2019. The paper, titled Predicting Exploited

Vulnerabilities, submitted to IEEE Transactions on Dependable and Secure

Computing, corresponds to chapter 8 of this dissertation.

9.4 Future Work

It is necessary for vendors to identify the vulnerabilities and their detection

pattern. Specifically, the vulnerabilities at risk of being exploited, and find those with

the potential of having rapidly an exploit. We showed that we can improve the accuracy

for predicting future vulnerabilities whether is it exploited or not.

Future work could be focused on exploring other nonlinear model structures

using machine learning algorithms, which are capable of catching nonlinear nature of

vulnerability data. Among them are Recurrent Neural Network (RNN) models, used

for prediction time series, which may perform superior to NNMs at modeling

dependencies between two points in a sequence. Generally, in NNMs, we have to

choose the length of the input (number of inputs) beforehand. Then, it is not possible

to learn functions that depends on the inputs that happened a long time ago. This

problem could be solved by having an RNN, which can theoretically store information

from arbitrarily long time ago.

132

Appendices

Appendix A: Clustering Tables

Operating Systems

Table 43: NUMBER OF VULNERABILITIES PER OS

OS Windows Mac IOS Linux

Vulnerabilities 3434 2908 698 5812

Labelled Vulnerabilities 2974 (86.6%) 2513 (86.4%) 643 (92.1%) 4533 (78%)

Non-labelled Vulnerabilities 460 (13.4%) 395 (13.6%) 55 (7.9%) 1279 (22%)

Table 44: NUMBER OF VULNERABILITIES PER TYPE AND OS

Keywords Windows Mac IOS Linux

Denial of Service
900

(30.26%)

1214

(48.31%)

517

(80.40%)

2442

(53.87%)

Execute Code
1244

(41.83%)

1445

(57.50%)

71

(11.04%)

969

(21.38%)

Overflow
710

(23.87%)

1041

(41.43%)

64

(9.95%)

1211

(26.72%)

SQL Injection
7

(0.23%)

3

(0.11%)
0

13

(0.29%)

Obtain Information
387

(13.01%)

325

(12.93%)

27

(4.20%)

601

(13.26%)

Gain Privileges
579

(19.47%)

186

(7.40%)

14

(2.18%)

431

(9.51%)

Bypass Restriction or

Similar

248

(8.34%)

258

(10.27%)

49

(7.62%)

340

(7.50%)

Directory Traversal
33

(1.11%)

19

(0.76%)

2

(0.31%)

56

(1.23%)

Cross Site Scripting
70

(2.35%)

58

(2.31%)

11

(1.71%)

86

(1.90%)

Http Response

Splitting
0

2

(0.08%)
0

6

(0.13%)

CSRF
3

(0.10%)

3

(0.12%)

3

(0.47%)

13

(0.29%)

Memory Corruption
362

(12.17%)

758

(30.16%)

8

(1.24%)

278

(6.13%)

133

Table 45: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (WINDOWS)

Keywords
Windows

1 2 3 4 5 6

Denial of Service 0
1

(0.2%)

253

(88.8%)

537

(100%)

68

(16.3%)

41

(7.1%)

Execute Code 0
2

(0.4%)

262

(91.9%)
0

400

(95.7%)

580

(100%)

Overflow
62

(8.9%)

1

(0.2%)

170

(59.6%)

59

(11%)

418

(100%)
0

SQL Injection
2

(0.3%)
0 0 0 0

5

(0.9%)

Obtain Information 0
376

(81.9%)

1

(0.3%)

3

(0.6%)
0

7

(1.2%)

Gain Privileges
517

(74.4%)

10

(2.2%)

11

(3.9%)

20

(3.7%)

2

(0.5%)

19

(3.3%)

Bypass Restriction or

Similar

183

(26.3%)

45

(9.8%)

1

(0.3%)

3

(0.6%)

1

(0.2%)

15

(2.6%)

Directory Traversal
1

(0.1%)

23

(5%)
0

1

(0.2%)
0

8

(1.4%)

Cross Site Scripting
3

(0.4%)

61

(13.3%)
0 0 0

6

(1%)

Http Response

Splitting
0 0 0 0 0 0

CSRF
2

(0.3%)

1

(0.2%)
0 0 0 0

Memory Corruption
15

(2.2%)

1

(0.2%)

285

(100%)

11

(2%)
0

50

(8.6%)

Vulnerabilities 695 459 285 537 418 580

Table 46: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (MAC)

Keywords
Mac

1 2 3 4 5 6

Denial of Service
624

(90.7%)

18

(14.6%)

36

(11.5%)

210

(50.2%)

322

(34.4%)

4

(11.4%)

Execute Code
615

(89.4%)

2

(1.6%)

3

(1%)

377

(90.2%)

447

(47.7%)

1

(2.9%)

Overflow
574

(83.4%)
0

14

(4.5%)

418

(100%)
0

35

(100%)

SQL Injection 0 0 0 0
3

(0.3%)
0

Obtain Information
9

(1.3%)

3

(2.4%)

312

(100%)
0

1

(0.1%)
0

Gain Privileges
40

(5.8%)

123

(100%)
0

1

(0.2%)
0

22

(62.9%)

Bypass Restriction or

Similar
0

5

(4.1%)

42

(13.5%)
0

208

(22.2%)

3

(8.6%)

Directory Traversal 0 0 0 0
19

(2%)
0

Cross Site Scripting 0 0
1

(0.3%)
0

57

(6.1%)
0

Http Response

Splitting
0 0 0 0

2

(0.2%)
0

CSRF 0 0 0 0
3

(0.3%)
0

Memory Corruption
688

(100%)

5

(4.1%)

1

(0.3%)
0

63

(6.7%)

1

(2.9%)

Vulnerabilities 688 123 312 418 937 35

134

Table 47: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (IOS)

Keywords
IOS

1 2 3 4 5 6 7

Denial of Service
456

(100%)

11

(39.3%)

0 33

(94.3%)

8

(30.8%)

0 9

(23.1%)

Execute Code
0 28

(100%)

6

(46.1%)

0 0 3

(6.2%)

34

(87.2%)

Overflow
0 28

(100%)

0 35

(100%)

0 1

(2.1%)

0

SQL Injection 0 0 0 0 0 0 0

Obtain Information
0 0 0 0 26

(100%)

1

(2.1%)

0

Gain Privileges
0 0 0 1

(2.9%)

0 0 13

(33.3%)

Bypass Restriction or

Similar

2

(0.4%)

0 0 0 0 47

(97.9%)

0

Directory Traversal
1

(0.2%)

0 0 0 0 1

(2.1%)

0

Cross Site Scripting
0 0 11

(84.6%)

0 0 0 0

Http Response

Splitting

0 0 0 0 0 0 0

CSRF
0 0 0 0 0 0 3

(7.7%)

Memory Corruption
5

(1%)

0 0 2

(5.7%)

1

(3.8%)

0 0

Vulnerabilities 456 28 13 35 26 48 39

Table 48: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (LINUX)

Keywords
Linux

1 2 3 4 5 6 7

Denial of Service
1579

(100%)

1

(1.8%)

722

(96%)

93

(87.7%)

13

(3.9%)

0 34

(6.2%)

Execute Code
68

(4.3%)

6

(11.1%)

213

(28.3%)

45

(42.4%)

23

(7%)

608

(52.1%)

6

(1.1%)

Overflow
0 0 752

(100%)

0 6

(1.8%)

433

(37.1%)

20

(3.7%)

SQL Injection
2

(0.1%)

0 0 0 2

(0.6%)

9

(0.8%)

0

Obtain Information
0 0 24

(3.2%)

2

(1.9%)

28

(8.5%)

0 547

(100%)

Gain Privileges
82

(5.2%)

1

(1.8%)

41

(5.4%)

10

(9.4%)

9

(2.7%)

275

(23.6%)

13

(2.4%)

Bypass Restriction or

Similar

0 4

(7.4%)

6

(0.8%)

0 329

(100%)

1

(0.1%)

0

Directory Traversal
0 54

(100%)

1

(0.1%)

0 1

(0.3%)

0 0

Cross Site Scripting
0 0 0 0 3

(0.9%)

81

(6.9%)

2

(0.4%)

Http Response

Splitting

0 0 0 0 0 6

(0.5%)

0

CSRF
0 0 0 0 4

(1.2%)

9

(0.8%)

0

Memory Corruption
0 0 162

(21.5%)

106

(100%)

2

(0.6%)

6

(0.5%)

2

(0.4%)

Vulnerabilities 1579 54 752 106 329 1166 547

135

Table 49: CLUSTER COMPOSITION FOR OSS

OS Cluster Number Prevalent Keywords
Cluster

Name

W
in

d
o

w
s

1 Gain privileges G

2 Obtain Information O

3 DoS, Execute code, Memory corruption DEM

4 DoS D

5 Execute code, Overflow EO

6 Execute code E
M

a
c

1
DoS, Execute code, Overflow, Memory

corruption
DEOM

2 Gain privileges G

3 Obtain Information O

4 Execute code, Overflow EO

5 Execute code (47.7%) E

6 Overflow, Gain privileges OG

IO
S

1 DoS D

2 Execute code, Overflow EO

3 Cross site scripting C

4 DoS, Overflow DO

5 Obtain Information O

6 Bypass a restriction B

7 Execute code E

L
in

u
x

1 DoS D

2 Directory Traversal DT

3 DoS, Overflow DO

4 DoS, Memory corruption DM

5 Bypass a restriction B

6 Execute code (52.1%) E

7 Obtain Information O

Web Browsers

Table 50: NUMBER OF VULNERABILITIES PER WEB BROWSER

Web Browser Explorer Safari Firefox Chrome

Vulnerabilities 1862 994 1784 1906

Labelled Vulnerabilities 1601 (86.0%) 886 (89.1%) 1375 (77.1%) 1563 (82.0%)

Non-labelled Vulnerabilities 261 (14.0%) 108 (10.9%) 409 (22.9%) 343 (18.0%)

136

Table 51: NUMBER OF VULNERABILITIES PER TYPE AND WEB BROWSER

Keywords Explorer Safari Firefox Chrome

Denial of Service
757

(47.28%)

649

(73.25%)

606

(44.07%)

993

(63.53%)

Execute Code
1197

(74.77%)

627

(70.77%)

724

(52.65%)

335

(21.43%)

Overflow
739

(46.16%)

453

(51.13%)

370

(26.91%)

473

(30.26%)

SQL Injection
0

(0%)

0

(0%)

0

(0%)

0

(0%)

Obtain

Information

145

(9.06%)

97

(10.95%)

163

(11.85%)

102

(6.53%)

Gain Privileges
38

(2.37%)

3

(0.34%)

40

(2.91%)

9

(0.58%)

Bypass

Restriction or

Similar

116

(7.24%)

64

(7.22%)

188

(13.67%)

170

(10.88%)

Directory

Traversal

4

(0.25%)

3

(0.34%)

9

(0.65%)

8

(0.51%)

Cross Site

Scripting

48

(3.00%)

70

(7.90%)

125

(9.09%)

63

(4.03%)

Http Response

Splitting

1

(0.06%)

0

(0%)

1

(0.07%)

0

(0%)

CSRF
0

(0%)

2

(0.23%)

9

(0.65%)

3

(0.19%)

Memory

Corruption

885

(55.28%)

508

(57.34%)

388

(28.22%)

207

(13.24%)

Table 52: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (INTERNET EXPLORER)

Keywords
Internet Explorer

1 2 3 4 5

Denial of Service
644

(100%)
0 0

9

(2.5%)

104

(40.9%)

Execute Code
641

(99.5%)

2

(1.6%)

200

(89.7%)

354

(100%)
0

Overflow
502

(77.9%)

1

(0.8%)

223

(100%)
0

13

(5.1%)

SQL Injection 0 0 0 0 0

Obtain Information 0
26

(20.6%)
0

3

(0.8%)

116

(45.7%)

Gain Privileges 0
1

(0.8%)
0

5

(1.4%)

32

(12.6%)

Bypass Restriction or

Similar

1

(0.1%)

102

(80.9%)
0

13

(3.7%)
0

Directory Traversal 0
1

(0.8%)
0

1

(0.3%)

2

(0.8%)

Cross Site Scripting 0
41

(32.5%)
0

3

(0.8%)

4

(1.6%)

Http Response

Splitting
0 0 0 0

1

(0.4%)

CSRF 0 0 0 0 0

Memory Corruption
636

(98.8%)
0

149

(66.8%)

98

(27.7%)

2

(0.8%)

Vulnerabilities 644 126 223 354 254

137

Table 53: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (SAFARI)

Keywords
Safari

1 2 3

Denial of Service 0
143

(79.9%)

506

(99.8%)

Execute Code
2

(1%)

123

(68.7%)

502

(99%)

Overflow
1

(0.5%)

34

(19%)

418

(82.4%)

SQL Injection 0 0 0

Obtain Information
94

(47%)

1

(0.6%)

2

(0.4%)

Gain Privileges
3

(1.5%)
0 0

Bypass Restriction

or Similar

63

(31.5%)

1

(0.6%)
0

Directory Traversal
2

(1%)

1

(0.6%)
0

Cross Site Scripting
69

(34.5%)

1

(0.6%)
0

Http Response

Splitting
0 0 0

CSRF
2

(1%)
0 0

Memory Corruption 0
1

(0.6%)

507

(100%)

Vulnerabilities 200 179 507

Table 54: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (FIREFOX)

Keywords
Firefox

1 2 3 4 5

Denial of Service
100

(46.1%)

389

(99.2%)
0

113

(76.3%)

4

(2.6%)

Execute Code
138

(63.6%)

280

(71.4%)

208

(44.5%)

95

(64.2%)

3

(2%)

Overflow
217

(100%)
0 0

148

(100%)

5

(3.3%)

SQL Injection 0 0 0 0 0

Obtain

Information

10

(4.6%)

2

(0.5%)
0 0

151

(100%)

Gain Privileges
4

(1.8%)

1

(0.2%)

31

(6.6%)

1

(0.7%)

3

(2%)

Bypass Restriction

or Similar

1

(0.5%)

1

(0.2%)

152

(32.5%)

2

(1.3%)

32

(21.2%)

Directory

Traversal
0

1

(0.2%)

7

(1.5%)
0

1

(0.7%)

Cross Site

Scripting
0 0

122

(26.1%)
0

3

(2%)

Http Response

Splitting
0 0

1

(0.2%)
0 0

CSRF 0 0
8

(1.7%)
0

1

(0.7%)

Memory

Corruption
0

238

(60.7%)

2

(0.4%)

148

(100%)
0

Vulnerabilities 217 392 467 148 151

138

Table 55: NUMBER OF VULNERABILITIES PER TYPE, CLUSTER (CHROME)

Keywords
Chrome

1 2 3 4 5

Denial of Service
868

(100%)

1

(1%)

2

(0.9%)

1

(1.8%)

121

(36.8%)

Execute Code
0 2

(2%)

2

(0.9%)

5

(9.1%)

326

(99%)

Overflow
263

(30.3%)

3

(3%)

38

(17.9%)

0 169

(51.4%)

SQL Injection 0 0 0 0 0

Obtain Information
0 99

(100%)

0 0 3

(0.9%)

Gain Privileges
0 0 9

(4.2%)

0 0

Bypass Restriction

or Similar

1

(0.1%)

11

(11.1%)

154

(72.6%)

4

(7.3%)

0

Directory Traversal
0 0 8

(3.8%)

0 0

Cross Site Scripting
0 8

(8.1%)

0 55

(100%)

0

Http Response

Splitting
0 0 0 0 0

CSRF
0 0 3

(1.4%)

0 0

Memory

Corruption

70

(8.1%)

1

(1%)

1

(0.5%)

0 135

(41%)

Vulnerabilities 868 99 212 55 329

Table 56: CLUSTER COMPOSITION FOR WEB BROWSERS

Web

Browser

Cluster

Number
Prevalent Keywords

Cluster

Name

In
te

rn
et

E
x

p
lo

re
r

1 DoS, Execute code, Overflow, Memory corruption DEOM

2 Bypass a restriction B

3 Execute code, Overflow, Memory corruption EOM

4 Execute code E

5 Obtain Information (45.7%) O

S
a

fa
ri

1 Obtain Information (47%) O

2 DoS, Execute code DE

3 DoS, Execute code, Overflow, Memory corruption DEOM

F
ir

ef
o

x

1 Execute code, Overflow EO

2 DoS, Execute code, Memory corruption DEM

3 Execute code (44.5%) E

4 DoS, Execute code, Overflow, Memory corruption DEOM

5 Obtain Information O

C
h

ro
m

e

1 DoS D

2 Obtain Information O

3 Bypass a restriction B

4 Cross Site Scripting C

5 Execute code E

139

Bibliography

[1] H. Okamura, M. Tokuzane, and T. Dohi, “Optimal Security Patch Release Timing

under Non-homogeneous Vulnerability-Discovery Processes,” presented at the

20th International Symposium on Software Reliability Engineering, 2009, pp.

120–128.

[2] A. A. Y. Mussa, “Quantifying the security risk of discovering and exploiting

software vulnerabilities,” Ph.D., Colorado State University, United States --

Colorado, 2016.

[3] M. R. Lyu, Ed., Handbook of software reliability engineering. Los Alamitos,

Calif. : New York: IEEE Computer Society Press ; McGraw Hill, 1996.

[4] P. E. Verissimo et al., “Intrusion-tolerant middleware: the road to automatic

security,” IEEE Secur. Priv. Mag., vol. 4, no. 4, pp. 54–62, Jul. 2006.

[5] J. A. Ozment, “Vulnerability discovery & software security,” University of

Cambridge, 2007.

[6] E. Rescorla, “Security holes... Who cares?,” presented at the USENIX Security,

2003.

[7] E. Rescorla, “Is finding security holes a good idea?,” IEEE Secur. Priv. Mag., vol.

3, no. 1, pp. 14–19, Jan. 2005.

[8] O. H. Alhazmi and Y. K. Malaiya, “Quantitative vulnerability assessment of

systems software,” 2005, pp. 615–620.

[9] H. Okamura, M. Tokuzane, and T. Dohi, “Quantitative Security Evaluation for

Software System from Vulnerability Database,” J. Softw. Eng. Appl., vol. 06, no.

04, p. 15, Apr. 2013.

[10] W. A. Arbaugh, W. L. Fithen, and J. McHugh, “Windows of vulnerability: a case

study analysis,” Computer, vol. 33, no. 12, pp. 52–59, Dec. 2000.

[11] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale Vulnerability Analysis,”

in Proceedings of the 2006 SIGCOMM Workshop on Large-scale Attack Defense,

New York, NY, USA, 2006, pp. 131–138.

[12] S. Frei, D. Schatzmann, B. Plattner, and B. Trammell, “Modeling the Security

Ecosystem - The Dynamics of (In)Security,” in Economics of Information

Security and Privacy, Springer, Boston, MA, 2010, pp. 79–106.

[13] S. Zhang, D. Caragea, and X. Ou, “An empirical study on using the national

vulnerability database to predict software vulnerabilities,” presented at the

International Conference on Database and Expert Systems Applications, 2011, pp.

217–231.

[14] “CVE - Common Vulnerabilities and Exposures (CVE).” [Online]. Available:

https://cve.mitre.org/. [Accessed: 15-Jun-2017].

[15] N. Nagappan and T. Ball, “Use of relative code churn measures to predict system

defect density,” in Proceedings. 27th International Conference on Software

Engineering, 2005. ICSE 2005., 2005, pp. 284–292.

[16] L. Allodi and F. Massacci, “Comparing Vulnerability Severity and Exploits Using

Case-Control Studies,” ACM Trans Inf Syst Secur, vol. 17, no. 1, pp. 1:1–1:20,

Aug. 2014.

140

[17] S. Woo, O. Alhazmi, and Y. Malaiya, “Assessing Vulnerabilities in Apache and

IIS HTTP Servers,” 2006, pp. 103–110.

[18] O. H. Alhazmi and Y. K. Malaiya, “Application of Vulnerability Discovery

Models to Major Operating Systems,” IEEE Trans. Reliab., vol. 57, no. 1, pp. 14–

22, Mar. 2008.

[19] G. R. Hudson, “Program errors as a birth-and-death process,” System

Development Corp., Report SP-3011, Dec. 1967.

[20] R. Anderson, “Security in open versus closed systems—the dance of Boltzmann,

Coase and Moore,” Cambridge University, England, Technical report, 2002.

[21] O. H. Alhazmi and Y. K. Malaiya, “Modeling the vulnerability discovery

process,” in 16th IEEE International Symposium on Software Reliability

Engineering (ISSRE’05), 2005, pp. 10 pp. – 138.

[22] J. Kim, Y. K. Malaiya, and I. Ray, “Vulnerability Discovery in Multi-Version

Software Systems,” in 10th IEEE High Assurance Systems Engineering

Symposium, 2007. HASE ’07, 2007, pp. 141–148.

[23] P. L. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam, “Empirical Evaluation

of Defect Projection Models for Widely-deployed Production Software Systems,”

in Proceedings of the 12th ACM SIGSOFT Twelfth International Symposium on

Foundations of Software Engineering, New York, NY, USA, 2004, pp. 263–272.

[24] F. Massacci and V. H. Nguyen, “An Empirical Methodology to Evaluate

Vulnerability Discovery Models,” IEEE Trans. Softw. Eng., vol. 40, no. 12, pp.

1147–1162, Dec. 2014.

[25] H. Joh and Y. K. Malaiya, “Modeling Skewness in Vulnerability Discovery:

Modeling Skewness in Vulnerability Discovery,” Qual. Reliab. Eng. Int., vol. 30,

no. 8, pp. 1445–1459, Dec. 2014.

[26] J. Y. Kim, “Vulnerability discovery in multiple version software systems : open

source and commercial software systems,” Thesis, Colorado State University.

Libraries, 2007.

[27] A. Ozment and S. E. Schechter, “Milk or wine: does software security improve

with age?,” presented at the 15th USENIX Security Symposium, 2006.

[28] K. Chan, D. Feng, P. Su, and C. . Nie, “Multicycle vulnerability discovery model

for prediction,” J. Softw., vol. 21, no. 9, pp. 2367–2375, 2010.

[29] Y. Shin and L. Williams, “An Empirical Model to Predict Security Vulnerabilities

Using Code Complexity Metrics,” in Proceedings of the Second ACM-IEEE

International Symposium on Empirical Software Engineering and Measurement,

New York, NY, USA, 2008, pp. 315–317.

[30] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating Complexity,

Code Churn, and Developer Activity Metrics as Indicators of Software

Vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787, Nov. 2011.

[31] Y. Shin and L. Williams, “Can traditional fault prediction models be used for

vulnerability prediction?,” Empir. Softw. Eng., vol. 18, no. 1, pp. 25–59, Feb.

2013.

[32] V. H. Nguyen, S. Dashevskyi, and F. Massacci, “An automatic method for

assessing the versions affected by a vulnerability,” Empir. Softw. Eng., vol. 21,

no. 6, pp. 2268–2297, Dec. 2016.

141

[33] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A Large Scale Exploratory Analysis

of Software Vulnerability Life Cycles,” in Proceedings of the 34th International

Conference on Software Engineering, Piscataway, NJ, USA, 2012, pp. 771–781.

[34] H. Joh and Y. K. Malaiya, “Defining and Assessing Quantitative Security Risk

Measures Using Vulnerability Lifecycle and CVSS Metrics,” in The 2011

international conference on security and management (sam), 2011, pp. 10–16.

[35] M. A. McQueen, T. A. McQueen, W. F. Boyer, and M. R. Chaffin, “Empirical

Estimates and Observations of 0Day Vulnerabilities,” in 2009 42nd Hawaii

International Conference on System Sciences, 2009, pp. 1–12.

[36] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond Heuristics:

Learning to Classify Vulnerabilities and Predict Exploits,” in Proceedings of the

16th ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, New York, NY, USA, 2010, pp. 105–114.

[37] C. Steve and R. A. Martin, “Vulnerability type distributions in CVE,” Mitre

report, 2007.

[38] A. Vega, P. Bose, and A. Buyuktosunoglu, Rugged Embedded Systems:

Computing in Harsh Environments. Morgan Kaufmann, 2016.

[39] M. Bernaschi, E. Gabrielli, and L. V. Mancini, “Remus: A Security-enhanced

Operating System,” ACM Trans Inf Syst Secur, vol. 5, no. 1, pp. 36–61, Feb. 2002.

[40] R. A. Johnson and D. W. Wichern, Applied multivariate statistical analysis, 6th

ed. Upper Saddle River, N.J: Pearson Prentice Hall, 2007.

[41] C. Sabottke, S. Octavian, and T. Dumitras, “Vulnerability Disclosure in the Age

of Social Media: Exploiting Twitter for Predicting Real-World Exploits,”

presented at the USENIX Security, 2015, vol. 15.

[42] A. Younis, Y. K. Malaiya, and I. Ray, “Assessing vulnerability exploitability risk

using software properties,” Softw. Qual. J., vol. 24, no. 1, pp. 159–202, Mar. 2016.

[43] K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, “DDoS attack detection method

using cluster analysis,” Expert Syst. Appl., vol. 34, no. 3, pp. 1659–1665, Apr.

2008.

[44] S. Huang, H. Tang, M. Zhang, and J. Tian, “Text Clustering on National

Vulnerability Database,” in 2010 Second International Conference on Computer

Engineering and Applications, 2010, vol. 2, pp. 295–299.

[45] M. Bozorgi, “A machine learning framework for classifying invulnerabilites and

predicting exploitability,” University of California, San Diego, 2009.

[46] P. Mell, K. Scarfone, and S. Romanosky, “A complete guide to the common

vulnerability scoring system version 2.0.” FIRST-Forum of Incident Response

and Security Teams, 2007.

[47] L. Allodi and F. Massacci, “A Preliminary Analysis of Vulnerability Scores for

Attacks in Wild: The Ekits and Sym Datasets,” in Proceedings of the 2012 ACM

Workshop on Building Analysis Datasets and Gathering Experience Returns for

Security, New York, NY, USA, 2012, pp. 17–24.

[48] J. Zheng, H. Okamura, and T. Dohi, “Mean Time to Security Failure of VM-Based

Intrusion Tolerant Systems,” in 2016 IEEE 36th International Conference on

Distributed Computing Systems Workshops (ICDCSW), 2016, pp. 128–133.

142

[49] J. Zheng, H. Okamura, and T. Dohi, “Survivability Analysis of VM-Based

Intrusion Tolerant Systems,” IEICE Trans. Inf. Syst., vol. E98-D, no. 12, pp.

2082–2090, Dec. 2015.

[50] C. Luo, H. Okamura, and T. Dohi, “Optimal planning for open source software

updates,” Proc. Inst. Mech. Eng. Part O J. Risk Reliab., vol. 230, no. 1, pp. 44–

53, Feb. 2016.

[51] A. M. Algarni and Y. K. Malaiya, “A consolidated approach for estimation of data

security breach costs,” in 2016 2nd International Conference on Information

Management (ICIM), 2016, pp. 26–39.

[52] B. B. Madan, K. Goševa-Popstojanova, K. Vaidyanathan, and K. S. Trivedi, “A

method for modeling and quantifying the security attributes of intrusion tolerant

systems,” Perform. Eval., vol. 56, no. 1–4, pp. 167–186, 2004.

[53] H. K. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen, “A trend analysis

of exploitations,” in Proceedings 2001 IEEE Symposium on Security and Privacy.

S&P 2001, Oakland, CA, USA, 2001, pp. 214–229.

[54] A. A. Younis, H. Joh, and Y. Malaiya, “Modeling Learningless Vulnerability

Discovery using a Folded Distribution,” in Proceedings of the International

Conference on Security and Management (SAM), 2011, pp. 617–623.

[55] L. Allodi, “The Heavy Tails of Vulnerability Exploitation,” in Engineering Secure

Software and Systems, 2015, pp. 133–148.

[56] T. Y. Yang and L. Kuo, “Bayesian computation for the superposition of

nonhomogeneous poisson processes,” Can. J. Stat., vol. 27, no. 3, pp. 547–556,

Sep. 1999.

[57] Scikit-learn developers, sklearn.model_selection.StratifiedKFold. 2017.

[58] Y. Movahedi, M. Cukier, A. Andongabo, and I. Gashi, “Cluster-based

Vulnerability Assessment Applied to Operating Systems,” presented at the 13th

European Dependable Computing Conference, Geneva, Switzerland, 2017.

[59] D. N. Gujarati and D. C. Porter, Basic Econometrics. McGraw-Hill Irwin, 2009.

[60] L. Mentaschi, G. Besio, F. Cassola, and A. Mazzino, “Problems in RMSE-based

wave model validations,” Ocean Model., vol. 72, pp. 53–58, Dec. 2013.

[61] S. R. Hanna, D. W. Heinold, A. P. I. H. and E. A. Dept, and E. R. & T. Inc,

Development and application of a simple method for evaluating air quality

models. American Petroleum Institute, 1985.

[62] Y. Movahedi, M. Cukier, A. Andongabo, and I. Gashi, “Cluster-based

vulnerability assessment of operating systems and web browsers,” Computing,

Sep. 2018.

[63] SAS® Enterprise MinerTM 14.2: High-Performance Procedures. Cary, NC: SAS

Institute Inc., 2016.

[64] W. S. Sarle, “Cubic Clustering Criterion,” SAS Institution Inc., Cary, NC, SAS®

Technical Report A-108, 1983.

[65] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of clusters in a

data set via the gap statistic,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 63, no.

2, pp. 411–423, Jan. 2001.

[66] K. P. Burnham and D. R. Anderson, “Multimodel Inference: Understanding AIC

and BIC in Model Selection,” Sociol. Methods Res., vol. 33, no. 2, pp. 261–304,

Nov. 2004.

143

[67] Y. Roumani, J. K. Nwankpa, and Y. F. Roumani, “Time series modeling of

vulnerabilities,” Comput. Secur., vol. 51, pp. 32–40, Jun. 2015.

[68] L. Wang, Y. Zeng, and T. Chen, “Back propagation neural network with adaptive

differential evolution algorithm for time series forecasting,” Expert Syst. Appl.,

vol. 42, no. 2, pp. 855–863, Feb. 2015.

[69] N. R. Pokhrel, H. Rodrigo, and C. P. Tsokos, “Cybersecurity: Time Series

Predictive Modeling of Vulnerabilities of Desktop Operating System Using

Linear and Non-Linear Approach,” J. Inf. Secur., vol. 08, no. 04, pp. 362–382,

2017.

[70] A. A. Adebiyi, A. O. Adewumi, and C. K. Ayo, “Comparison of ARIMA and

Artificial Neural Networks Models for Stock Price Prediction,” J. Appl. Math.,

vol. 2014, pp. 1–7, 2014.

[71] C. Bennett, R. A. Stewart, and C. D. Beal, “ANN-based residential water end-use

demand forecasting model,” Expert Syst. Appl., vol. 40, no. 4, pp. 1014–1023,

Mar. 2013.

[72] N. Kourentzes, D. K. Barrow, and S. F. Crone, “Neural network ensemble

operators for time series forecasting,” Expert Syst. Appl., vol. 41, no. 9, pp. 4235–

4244, Jul. 2014.

[73] A. Aslanargun, M. Mammadov, B. Yazici, and S. Yolacan, “Comparison of

ARIMA, neural networks and hybrid models in time series: tourist arrival

forecasting,” J. Stat. Comput. Simul., vol. 77, no. 1, pp. 29–53, Jan. 2007.

[74] H. G. Hosseini, D. Luo, and K. J. Reynolds, “The comparison of different feed

forward neural network architectures for ECG signal diagnosis,” Med. Eng. Phys.,

vol. 28, no. 4, pp. 372–378, May 2006.

[75] D. N. Gujarati and D. C. Porter, Basic Econometrics. McGraw-Hill Irwin, 2009.

[76] R. May, G. Dandy, and H. Maier, “Review of input variable selection methods

for artificial neural networks,” in Artificial neural networks-methodological

advances and biomedical applications, InTech, 2011.

[77] S. Siami-Namini and A. S. Namin, “Forecasting Economics and Financial Time

Series: ARIMA vs. LSTM,” ArXiv Prepr. ArXiv180306386, 2018.

[78] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural

networks:,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62, Mar. 1998.

[79] A. A. Younis and Y. K. Malaiya, “Comparing and Evaluating CVSS Base Metrics

and Microsoft Rating System,” in 2015 IEEE International Conference on

Software Quality, Reliability and Security, 2015, pp. 252–261.

[80] R. Adhikari and R. K. Agrawal, “An introductory study on time series modeling

and forecasting,” ArXiv Prepr. ArXiv13026613, 2013.

[81] C. N. Babu and B. E. Reddy, “A moving-average filter based hybrid ARIMA–

ANN model for forecasting time series data,” Appl. Soft Comput., vol. 23, pp. 27–

38, Oct. 2014.

[82] A. Phinyomark, A. Nuidod, P. Phukpattaranont, and C. Limsakul, “Feature

extraction and reduction of wavelet transform coefficients for EMG pattern

classification,” Elektron. Ir Elektrotechnika, vol. 122, no. 6, pp. 27–32, 2012.

[83] Y. Movahedi, M. Cukier, A. Andongabo, and I. Gashi, “Cluster-based

vulnerability assessment of operating systems and web browsers,” Computing,

vol. 101, no. 2, pp. 139–160, Feb. 2019.

144

[84] K. Bock, S. Shannon, Y. Movahedi, and M. Cukier, “Application of Routine

Activity Theory to Cyber Intrusion Location and Time,” in 2017 13th European

Dependable Computing Conference (EDCC), 2017, pp. 139–146.

