92 research outputs found

    A new remote sensing images and point-of-interest fused (RPF) model for sensing urban functional regions

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. For urban planning and environmental monitoring, it is essential to understand the diversity and complexity of cities to identify urban functional regions accurately and widely. However, the existing methods developed in the literature for identifying urban functional regions have mainly been focused on single remote sensing image data or social sensing data. The multi-dimensional information which was attained from various data source and could reflect the attribute or function about the urban functional regions that could be lost in some extent. To sense urban functional regions comprehensively and accurately, we developed a multi-mode framework through the integration of spatial geographic characteristics of remote sensing images and the functional distribution characteristics of social sensing data of Point-of-Interest (POI). In this proposed framework, a deep multi-scale neural network was developed first for the functional recognition of remote sensing images in urban areas, which explored the geographic feature information implicated in remote sensing. Second, the POI function distribution was analyzed in different functional areas of the city, then the potential relationship between POI data categories and urban region functions was explored based on the distance metric. A new RPF module is further deployed to fuse the two characteristics in different dimensions and improve the identification performance of urban region functions. The experimental results demonstrated that the proposed method can efficiently achieve the accuracy of 82.14% in the recognition of functional regions. It showed the great usability of the proposed framework in the identification of urban functional regions and the potential to be applied in a wide range of areas

    Understanding Mobile Traffic Patterns of Large Scale Cellular Towers in Urban Environment

    Full text link
    Understanding mobile traffic patterns of large scale cellular towers in urban environment is extremely valuable for Internet service providers, mobile users, and government managers of modern metropolis. This paper aims at extracting and modeling the traffic patterns of large scale towers deployed in a metropolitan city. To achieve this goal, we need to address several challenges, including lack of appropriate tools for processing large scale traffic measurement data, unknown traffic patterns, as well as handling complicated factors of urban ecology and human behaviors that affect traffic patterns. Our core contribution is a powerful model which combines three dimensional information (time, locations of towers, and traffic frequency spectrum) to extract and model the traffic patterns of thousands of cellular towers. Our empirical analysis reveals the following important observations. First, only five basic time-domain traffic patterns exist among the 9,600 cellular towers. Second, each of the extracted traffic pattern maps to one type of geographical locations related to urban ecology, including residential area, business district, transport, entertainment, and comprehensive area. Third, our frequency-domain traffic spectrum analysis suggests that the traffic of any tower among the 9,600 can be constructed using a linear combination of four primary components corresponding to human activity behaviors. We believe that the proposed traffic patterns extraction and modeling methodology, combined with the empirical analysis on the mobile traffic, pave the way toward a deep understanding of the traffic patterns of large scale cellular towers in modern metropolis.Comment: To appear at IMC 201

    A Probabilistic Embedding Clustering Method for Urban Structure Detection

    Full text link
    Urban structure detection is a basic task in urban geography. Clustering is a core technology to detect the patterns of urban spatial structure, urban functional region, and so on. In big data era, diverse urban sensing datasets recording information like human behaviour and human social activity, suffer from complexity in high dimension and high noise. And unfortunately, the state-of-the-art clustering methods does not handle the problem with high dimension and high noise issues concurrently. In this paper, a probabilistic embedding clustering method is proposed. Firstly, we come up with a Probabilistic Embedding Model (PEM) to find latent features from high dimensional urban sensing data by learning via probabilistic model. By latent features, we could catch essential features hidden in high dimensional data known as patterns; with the probabilistic model, we can also reduce uncertainty caused by high noise. Secondly, through tuning the parameters, our model could discover two kinds of urban structure, the homophily and structural equivalence, which means communities with intensive interaction or in the same roles in urban structure. We evaluated the performance of our model by conducting experiments on real-world data and experiments with real data in Shanghai (China) proved that our method could discover two kinds of urban structure, the homophily and structural equivalence, which means clustering community with intensive interaction or under the same roles in urban space.Comment: 6 pages, 7 figures, ICSDM201

    Mobile cellular big data: linking cyberspace and the physical world with social ecology

    Full text link

    A survey of sustainable development of intelligent transportation system based on urban travel demand

    Get PDF
    This paper provides a comprehensive exploration of urban travel demand forecasting and its implications for intelligent transportation systems, emphasizing the crucial role of intelligent transportation systems in promoting sustainable urban development. With the increasing challenges posed by traffic congestion, environmental pollution, and diverse travel needs, accurate prediction of urban travel demand becomes essential for optimizing transportation systems, fostering sustainable travel methods, and creating opportunities for business development. However, achieving this goal involves overcoming challenges such as data collection and processing, privacy protection, and information security. To address these challenges, the paper proposes a set of strategic measures, including advancing intelligent transportation technology, integrating intelligent transportation systems with urban planning, enforcing policy guidance and market supervision, promoting sustainable travel methods, and adopting intelligent transportation technology and green energy solutions. Additionally, the study highlights the role of intelligent transportation systems in mitigating traffic congestion and environmental impact through intelligent road condition monitoring, prediction, and traffic optimization. Looking ahead, the paper foresees an increasingly pivotal role for intelligent transportation systems in the future, leveraging advancements in deep learning and information technology to more accurately collect and analyze urban travel-related data for better predictive modeling. By combining data analysis, public transportation promotion, shared travel modes, intelligent transportation technology, and green energy adoption, cities can build more efficient, environmentally friendly transportation systems, enhancing residents’ travel experiences while reducing congestion and pollution to promote sustainable urban development. Furthermore, the study anticipates that intelligent transportation systems will be intricately integrated with urban public services and management, facilitating efficient and coordinated urban functions. Ultimately, the paper envisions intelligent transportation systems playing a vital role in supporting urban traffic management and enhancing the overall well-being of urban construction and residents’ lives. In conclusion, this research not only enhances our understanding of urban travel demand forecasting and the evolving landscape of intelligent transportation systems but also provides valuable insights for future research and practical applications in related fields. The study encourages greater attention and investment from scholars and practitioners in the research and practice of intelligent transportation systems to collectively advance the progress of urban transportation and sustainable development

    Revealing intra-urban spatial structure through an exploratory analysis by combining road network abstraction model and taxi trajectory data

    Full text link
    The unprecedented urbanization in China has dramatically changed the urban spatial structure of cities. With the proliferation of individual-level geospatial big data, previous studies have widely used the network abstraction model to reveal the underlying urban spatial structure. However, the construction of network abstraction models primarily focuses on the topology of the road network without considering individual travel flows along with the road networks. Individual travel flows reflect the urban dynamics, which can further help understand the underlying spatial structure. This study therefore aims to reveal the intra-urban spatial structure by integrating the road network abstraction model and individual travel flows. To achieve this goal, we 1) quantify the spatial interaction relatedness of road segments based on the Word2Vec model using large volumes of taxi trip data, then 2) characterize the road abstraction network model according to the identified spatial interaction relatedness, and 3) implement a community detection algorithm to reveal sub-regions of a city. Our results reveal three levels of hierarchical spatial structures in the Wuhan metropolitan area. This study provides a data-driven approach to the investigation of urban spatial structure via identifying traffic interaction patterns on the road network, offering insights to urban planning practice and transportation management

    Ride-sourcing compared to its public-transit alternative using big trip data

    Get PDF
    Ride-sourcing risks increasing\ua0GHG emissions\ua0by replacing public transit (PT) for some trips therefore, understanding the relation of ride-sourcing to PT in urban mobility is crucial. This study explores the competition between ride-sourcing and PT through the lens of big data analysis. This research uses 4.3 million ride-sourcing trip records collected from Chengdu, China over a month, dividing these into two categories, transit-competing (48.2%) and non-transit-competing (51.8%). Here, a ride-sourcing trip is labelled transit-competing if and only if it occurs during the day and there is a PT alternative such that the walking distance associated with it is less than 800\ua0m for access and egress alike. We construct a glass-box model to characterise the two ride-sourcing trip categories based on trip attributes and the built environment from the enriched trip data. This study provides a good overview of not only the main factors affecting the relationship between ride-sourcing and PT, but also the interactions between those factors. The built environment, as characterised by points of interest (POIs) and transit-stop density, is the most important aspect followed by travel time, number of transfers, weather, and a series of interactions between them. Competition is more likely to arise if: (1) the travel time by ride-sourcing <15\ua0min or the travel time by PT is disproportionately longer than ride-sourcing; (2) the PT alternative requires multiple transfers, especially for the trips happening within the transition area between the central city and the outskirts; (3) the weather is good; (4)\ua0land use\ua0is high-density and high-diversity; (5) transit access is good, especially for the areas featuring a large number of business and much real estate. Based on the main findings, we discuss a few recommendations for transport planning and policymaking

    Discovering Urban Functional Zones By Latent Fusion of Users GPS Data and Points of Interests

    Full text link
    With rapid development of socio-economics, the task of discovering functional zones becomes critical to better understand the interactions between social activities and spatial locations. In this paper, we propose a framework to discover the functional zones by analyzing urban structures and social behaviors. The proposed approach models the inner influences between spatial locations and human activities by fusing the semantic meanings of both Point of Interests (POIs) and human activities to learn the latent representation of the regions. A spatial based unsupervised clustering method, Conditional Random Filed (CRF), is then applied to aggregate regions using both their spatial information and discriminative representations. Also, we estimate the functionality of the regions and annotate them by the differences between the normalized POI distributions which properly rank various functionalities. This framework is able to properly address the biased categories in sparse POI data, when exploring the unbiased and true functional zones. To validate our framework, a case study is evaluated by using very large real-world users GPS and POIs data from city of Raleigh. The results demonstrate that the proposed framework can better identify functional zones than the benchmarks, and, therefore, enhance understanding of urban structures with a finer granularity under practical conditions

    Mining urban perceptions from social media data

    Get PDF
    This vision paper summaries the methods of using social media data (SMD) to measure urban perceptions. We highlight two major types of data sources (i.e., texts and imagery) and two corresponding techniques (i.e., natural language processing and computer vision). Recognizing the data quality issues of SMD, we propose three criteria for improving the reliability of SMD-based studies. In addition, integrating multi-source data is a promising approach to mitigating the data quality problems
    • …
    corecore