197,339 research outputs found

    The application of combined momentum and blade element theory for aerodynamics performance analysis of rotating blades

    Get PDF
    In this thesis, a simulation package for the Six Degrees of Freedom (6DOF ) motion of an underwater vehicle is developed. Mathematical modeling of an underwater vehicle is done and the parameters needed to write such a simulation package are obtained from an existing underwater vehicle available in the literature. Basic equations of motion are developed to simulate the motion of the underwater vehicle and the parameters needed for the hydrodynamic modeling of the vehicle is obtained from the available literature. 6DOF simulation package prepared for the underwater vehicle was developed using the MATLAB environment. S-function hierarchy is developed using the same platform with C++ programming language. With the usage of Sfunctions the problems related to the speed of the platform have been eliminated. The use of S- function hierarchy brought out the opportunity of running the simulation package on other independent platforms and get results for the simulation. Keywords: Underwater Vehicle Simulation, Virtual Reality Modeling Language (VRML ), MATLAB S-function, Simulink, C++, 6DOF

    High-speed Underwater Wireless Optical Communication: Potential, Challenges, and Possible Solutions

    Get PDF
    Traditional underwater communication systems rely on acoustic modems due their reliability and long range. However their limited data rates, lead to the exploration of alternative techniques. In this talk, we briefly go over the potential offered by underwater wireless optical communication systems. We then summarize some of the underwater channel challenges going from severe absorption and scattering that need to be surpassed before such kind of systems can be deployed in practice. We finally present some of the on-going research directions in the area of underwater wireless optical communication systems in order to (i) better characterize and model the underwater optical channel and (ii) design, develop, and test experimentally new suitable modulation and coding techniques suitable for this environment.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Hearing in the Juvenile Green Sea Turtle (Chelonia mydas): A Comparison of Underwater and Aerial Hearing Using Auditory Evoked Potentials

    Full text link
    Sea turtles spend much of their life in aquatic environments, but critical portions of their life cycle, such as nesting and hatching, occur in terrestrial environments, suggesting that it may be important for them to detect sounds in both air and water. In this study we compared underwater and aerial hearing sensitivities in five juvenile green sea turtles (Chelonia mydas) by measuring auditory evoked potential responses to tone pip stimuli. Green sea turtles detected acoustic stimuli in both media, responding to underwater stimuli between 50 and 1600 Hz and aerial stimuli between 50 and 800 Hz, with maximum sensitivity between 200 and 400 Hz underwater and 300 and 400 Hz in air. When underwater and aerial hearing sensitivities were compared in terms of pressure, green sea turtle aerial sound pressure thresholds were lower than underwater thresholds, however they detected a wider range of frequencies underwater. When thresholds were compared in terms of sound intensity, green sea turtle sound intensity level thresholds were 2–39 dB lower underwater particularly at frequencies below 400 Hz. Acoustic stimuli may provide important environmental cues for sea turtles. Further research is needed to determine how sea turtles behaviorally and physiologically respond to sounds in their environment

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure
    • …
    corecore