10,464 research outputs found

    Aspect-Oriented Programming with Type Classes

    Get PDF
    We consider the problem of adding aspects to a strongly typed language which supports type classes. We show that type classes as supported by the Glasgow Haskell Compiler can model an AOP style of programming via a simple syntax-directed transformation scheme where AOP programming idioms are mapped to type classes. The drawback of this approach is that we cannot easily advise functions in programs which carry type annotations. We sketch a more principled approach which is free of such problems by combining ideas from intentional type analysis with advanced overloading resolution strategies. Our results show that type-directed static weaving is closely related to type class resolution -- the process of typing and translating type class programs

    Proof Relevant Corecursive Resolution

    Full text link
    Resolution lies at the foundation of both logic programming and type class context reduction in functional languages. Terminating derivations by resolution have well-defined inductive meaning, whereas some non-terminating derivations can be understood coinductively. Cycle detection is a popular method to capture a small subset of such derivations. We show that in fact cycle detection is a restricted form of coinductive proof, in which the atomic formula forming the cycle plays the role of coinductive hypothesis. This paper introduces a heuristic method for obtaining richer coinductive hypotheses in the form of Horn formulas. Our approach subsumes cycle detection and gives coinductive meaning to a larger class of derivations. For this purpose we extend resolution with Horn formula resolvents and corecursive evidence generation. We illustrate our method on non-terminating type class resolution problems.Comment: 23 pages, with appendices in FLOPS 201

    Proving Type Class Laws for Haskell

    Full text link
    Type classes in Haskell are used to implement ad-hoc polymorphism, i.e. a way to ensure both to the programmer and the compiler that a set of functions are defined for a specific data type. All instances of such type classes are expected to behave in a certain way and satisfy laws associated with the respective class. These are however typically just stated in comments and as such, there is no real way to enforce that they hold. In this paper we describe a system which allows the user to write down type class laws which are then automatically instantiated and sent to an inductive theorem prover when declaring a new instance of a type class.Comment: Presented at the Symposium for Trends in Functional Programming, 201
    corecore